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Abstract. Methods to quantify genetic overlap may elucidate relationships be-
tween disparate traits, and provide Bayesian priors to guide the search for ge-
netic influences on brain measures. Here we describe a threshold-free method 
called continuous inflation analysis (CIA), which we used to compare genome-
wide association statistics (GWAS) for the volumes of eight brain regions, 
computed from brain MRI. Our goal was to understand the extent of pleiotropy 
(overlap in genetic influences) and concordance for the volumes of brain re-
gions with different biological functions. We found significant pleiotropy 
among seven of the subcortical brain volumes. We found positive concordance 
across the seven subcortical structures and negative concordance between ge-
netic influences on each subcortical structure and intracranial volume (ICV). 
Using a conditional FDR approach, we showed that a given brain volume 
GWAS could act as a Bayesian prior and improve the power to detect novel as-
sociations in a related brain volume. When conditioning the putamen volume 
GWAS on the caudate volume GWAS, we identified 17 novel loci associated 
with putamen volume. 

1 Introduction 

Recent imaging genetics work in the Enhancing NeuroImaging Genetics through 
Meta-Analysis (ENIGMA) Consortium has focused on discovering common genetic 
variants associated with the volumes of seven subcortical brain structures (nucleus 
accumbens, amygdala, caudate, hippocampus, globus pallidus, putamen, thalamus) 
and one measure of global head size (intracranial volume; ICV) [1]. Hibar et al. ex-
amined individual SNP associations with each of the eight brain volumes – each con-
sidered as a single trait – but did not examine the overlapping genetic influence of the 
full set of common variants across structures. By examining the pleiotropy (common 
genetic influences) and concordance1 across subcortical structures we should be able 
to (1) define Bayesian approaches to guide the search for genetic influences on the 

                                                             
1  Concordance is an extension to the concept of pleiotropy that includes the direction of a 

pleiotropic SNP effect (i.e. a positive or negative correlation). 



brain, and (2) better understand the underlying genetic pathways that may partially 
explain volumetric variations across different brain regions.  
 
Twin and family studies can estimate the genetic correlation between subcortical 
brain volume traits [2], i.e., the fraction of the observed correlation that is due to ge-
netic factors. However, there may be little or no publicly available twin or family data 
for a given pair of traits. If genome-wide SNP data is available for a cohort, we can 
use GWAS summary statistics (i.e., regression coefficients relating each SNP to the 
traits of interest) to estimate the common genetic overlap. This is perhaps surprising, 
because almost all SNPs have no detectable effects, and even significantly associated 
SNPs generally have weak effects. So, without vast samples of data, it can be chal-
lenging to pick up genetic overlap from SNP association data. A recent method called 
LDSC regression [3] uses GWAS summary statistics from two traits to estimate a 
genetic correlation driven by common genetic determinants. One limitation of this 
method (and genetic correlations calculated from twin and family studies as well) is 
that it is not possible to identify which specific variants overlap and contribute to the 
correlation. A related method, SNP Effect Concordance Analysis (SECA)[4], looks at 
pleiotropy and concordance and predefined, arbitrary thresholds. Even so, it is of 
great interest to try to narrow the search for genetic variants associated with brain 
measures, to avoid heavy multiple comparisons corrections and the vast sample sizes 
they currently imply (often requiring tens of thousands of subjects, e.g. in the 
ENIGMA studies).  
  
Here we describe a novel method to quantify the global enrichment (pleiotropy) and 
concordance between GWAS summary statistics from two traits. We apply this meth-
od to examine the genetic overlap between brain structures examined in the ENIGMA 
Consortium. Our hypothesis is that brain regions will show genetic overlap with struc-
tures similar to their functional groupings: limbic system (hippocampus, amygdala, 
thalamus) and basal ganglia (putamen, caudate, nucleus accumbens, and globus palli-
dus). Further, we examine whether a conditional FDR framework can be used to boost 
power to detect novel associations.  

2 Methods 

2.1 Estimating the genetic overlap between two traits 

We developed a data-driven, threshold-free method, called continuous inflation analy-
sis (CIA), to assess global enrichment (pleiotropy) and concordance based on GWAS 
summary statistics from any two pairwise traits. Here we were interested in assessing 
the genetic overlap across the volumes of eight different brain regions: the nucleus 
accumbens, amygdala, caudate, hippocampus, globus pallidus, putamen, thalamus, 
and intracranial volume (ICV). We performed all pairwise combinations of overlap 
tests between the eight traits. Before comparing two traits, we designated one dataset 
the reference dataset and the other the test dataset. This designation is important be-
cause the CIA procedure is not symmetric. To begin, we performed a clumping pro-



cedure to select independent index SNPs for each LD block in the genome. The index 
SNPs were chosen based on significance levels in the reference dataset (PLINK op-
tions: --clump-p1 1 --clump-p2 1 --clump-kb 500 --clump-r2 0.2) [5]. Next, we 
merged the reference and test dataset such that only GWAS summary statistics for the 
index SNPs remained in the dataset. We estimated the global enrichment (pleiotropy) 
by first sorting the merged dataset by the P-value of each SNP in the reference dataset 
(in descending order). We iterated through the sorted merged dataset at a given step 
size (n = 100), with each step moving down the list by n SNPs. At each step, we cal-
culated amount of enrichment by comparing the empirical cumulative distribution 
function (ecdf) of P-values from the test dataset for SNPs from n to the end of the list 
with the ecdf of the full set of P-values from the test dataset. For example, say you are 
looking at the subset of SNPs in your test dataset where the subset is chosen such that 
it only includes SNPs with P-value < 0.05 in your reference dataset. Taking the ecdf 
of the subsetted set of SNPs and P-values from the test dataset you can determine if 
the set deviates from a null distribution. In this case the null distribution is the full set 
of SNPs and P-values from the test dataset without subsetting. Leftward deflections in 
the subsetted ecdf were considered evidence of enrichment at a given cutoff and were 
estimated using a one-sided, two-sample Kolmogorov-Smirnov test. The comparison 
of two traits was considered to have significant evidence of pleiotropy if the P-value 
vector over all cutoffs exceeded the Benjamini-Hochberg False Discovery Rate [6] 
(BH-FDR) threshold (set to q = (0.05/8 traits) = 0.00625). 
 
As an extension to the pleiotropy tests, we performed a test of concordance, which 
considers the effect direction (the sign of the beta-coefficient from the regression of a 
given SNP against a given trait) when assessing the extent of overlap between two 
traits. The concordance can be negative (the effect direction in test dataset is negative 
when the effect direction is positive in the reference dataset, and vice versa), positive 
(the effect direction is positive or negative in both datasets) or null when there is no 
evidence for concordance. The concordance test can be simply applied by filtering out 
SNPs from the merged dataset (keeping either negative or positive concordant SNPs) 
and then continuing on with the CIA procedure described above. The significance is 
calculated in the same way (with the KS test) and overall global evidence of concord-
ance was determined over all cutoffs (at BH-FDR q = 0.00625).  

2.2 Examining bias in enrichment tests using a negative control 

We obtained GWAS summary statistics from a skin-based trait (presence of a whorl 
on the left thumb [7]) to provide a negative control for our enrichment tests. The pres-
ence of whorls in fingerprints is unlikely to be related to brain volume phenotypes 
(and no previous link has been made in the literature) so estimating genetic overlap 
between brain volume GWAS and fingerprint whorl GWAS can provide evidence of 
Type II error bias in the CIA enrichment test model. Fingerprint data were collected 
from rolled ink prints and manually examined at the Queensland Institute of Medical 
Research and is described elsewhere [7]. The fingerprint whorl GWAS was based on 



data from 3,314 participants (twins and their family members) using genotypes im-
puted to the 1000 Genomes phase 1, version 3 reference panel [8].  

2.3 Boosting power to detect novel gene variants using conditional FDR 

For pairwise comparisons that show significant overlap, we can boost the power to 
detect individual SNPs associated with a given test trait by conditioning on the refer-
ence GWAS dataset. From the CIA model for a given pairwise comparison, we can 
choose the step-based cutoff that results in the most significant enrichment over all 
possible cutoffs. Next, we can apply the BH-FDR to the SNP P-values from the sub-
setted test dataset with q = 0.05. For comparison, we applied the BH-FDR to the full 
set of SNP P-values from the test dataset with q = 0.05. SNPs that pass BH-FDR in 
the subsetted dataset but not in the full dataset are considered to be detected with in-
creased power when conditioning on the reference dataset.  

3 Results 

3.1 Pleiotropic gene variants influence multiple brain regions 

We found significant evidence for pleiotropy between all pairwise comparisons of 
seven subcortical brain volumes (see Fig. 1). None of the pairwise comparisons with 
ICV showed significant overlap. The most significant comparison showing the high-
est evidence of pleiotropy occurred between the putamen and caudate (q = 0.0058). 
This relationship makes intuitive sense given the strong functional and histological 
evidence linking the two basal ganglia brain structures together.  

Fig. 1. Global evidence of pleiotropy for pairwise comparisons of eight brain traits. Compari-
sons were made using CIA and were considered significant at a BH-FDR threshold q = 

0.00625). The seven subcortical brain structures were tightly linked in terms of pleiotropy, but 
no structures showed evidence of pleiotropy with ICV. The most significant comparison (Pu-

tamen | Caudate) is marked with a white star. 



 

3.2 Evidence of a positive concordance between subcortical brain structures 

We found significant positive concordance in each of the pairwise comparisons of 
subcortical brain traits (see Fig. 2). In other words, genetic variants associated with an 
increase in a given brain volume also tend to be associated with an increase in the 
volume of another subcortical trait (and vice versa). Here there is no detectable evi-
dence of positive concordance between the subcortical brain structures and ICV. 
 

Fig. 2. Global evidence of positive concordance for pairwise comparisons of eight brain traits. 
Comparisons were made using CIA and were considered significant at a BH-FDR threshold q = 

0.00625). The seven subcortical brain structures were tightly linked in terms of positive con-
cordance, whereas none of the structures showed evidence of positive concordance with ICV.  



 

We found significant negative concordance in each of the pairwise comparisons be-
tween ICV and subcortical traits (see Fig. 3). In other words, gene variants that are 
associated with an increase in ICV also tend to be associated with a decrease in sub-
cortical brain volume. However, it is worth noting that the subcortical volume 
GWASs were corrected for ICV as a linear predictor so the relationship here likely 
represents any residual nonlinear relationship. In general, there is a positive phenotyp-
ic correlation between subcortical volumes and ICV. 

Fig. 3. Global evidence of negative concordance for pairwise comparisons of eight brain traits. 
Comparisons were made using CIA and were considered significant at a BH-FDR threshold q = 

0.00625). The pairwise comparisons with ICV and the other seven structures showed signifi-
cant negative concordance, whereas the pairwise comparisons among the subcortical brain 

volume traits were not significant. 



 

3.3 Finger whorl pattern as a negative control for enrichment tests in brain 

We found no evidence of pleiotropy between putamen volume and the dermatoglyph-
ic negative control (presence of whorl on the left thumb) at an FDR q-value = 0.05.  

3.4 Conditioning enrichment tests on another brain prior can boost power to 
detect effects in the original trait 

Several of the pairwise comparisons of pleiotropy were significant, so, for purposes of 
illustration of the method, here we give the conditional FDR results for the “most 
significant” comparison (putamen volume GWAS conditioned on caudate volume 
GWAS). We identified 17 additional significant variants influencing putamen volume 
that were previously undetected without conditioning on the caudate volume GWAS 
(see Table 1). 
 



Table 1. Conditional False Discovery Rate (FDR) analysis of putamen GWAS conditioned on 
caudate GWAS. Shown here are variants that pass FDR at q = 0.05 in the putamen volume 

GWAS when prioritizing SNPs based on their significance in the caudate GWAS, but do not 
pass FDR when considering the full set of putamen GWAS variants. 

 

SNP	
  
Raw	
  P-­‐value	
  in	
  
Putamen	
  GWAS	
   Subset	
  FDR	
  

FDR	
  of	
  Full	
  
Sample	
  

rs4888010	
   4.92E-­‐07	
   0.025	
   0.071	
  
rs11150623	
   1.25E-­‐06	
   0.027	
   0.076	
  
rs17388257	
   1.41E-­‐06	
   0.027	
   0.076	
  
rs62394265	
   1.42E-­‐06	
   0.027	
   0.076	
  
rs76647989	
   7.70E-­‐07	
   0.027	
   0.076	
  
rs7873504	
   1.37E-­‐06	
   0.027	
   0.076	
  
rs10963102	
   2.77E-­‐06	
   0.029	
   0.080	
  
rs12487861	
   3.16E-­‐06	
   0.029	
   0.080	
  
rs184917581	
   3.10E-­‐06	
   0.029	
   0.080	
  
rs6135525	
   3.04E-­‐06	
   0.029	
   0.080	
  
rs62022639	
   2.12E-­‐06	
   0.029	
   0.080	
  
rs6869844	
   2.26E-­‐06	
   0.029	
   0.080	
  
rs7325851	
   2.47E-­‐06	
   0.029	
   0.080	
  
rs80258284	
   2.30E-­‐06	
   0.029	
   0.080	
  
rs842389	
   1.92E-­‐06	
   0.029	
   0.080	
  

rs10033333	
   4.72E-­‐06	
   0.041	
   0.113	
  
rs115186168	
   5.00E-­‐06	
   0.041	
   0.113	
  
 

4 Conclusions 

We discovered evidence of significant pleiotropy between gene variants influencing 
different subcortical brain volumes, using continuous inflation analysis (CIA). This 
agrees with findings from twin and family heritability studies, which show that there 
is significant genetic correlation for volumetric measures of the subcortical structures 
[2]. The CIA analysis builds on the twin and family heritability estimates, because the 
overlap between traits is estimated from genome-wide association statistics only, and 
does not require a family or twin design – it can be applied to imaging genetic studies 
of unrelated individuals, which are more common. The most significant evidence of 
pleiotropy came from the putamen volume GWAS conditioned on the caudate volume 
GWAS. The close relationship between gene variants effecting both structures is intu-



itively reasonable, given the histological similarity of the caudate and putamen tissue 
[9].  
 
Besides the known relationships, it appears that gene variants that explain variances in 
the volumes of subcortical structures that were previously thought to be independent 
do indeed have an effect (in fact, all subcortical structures showed a significant rela-
tionship with all other subcortical structures). The lack of enrichment between ICV 
and subcortical structures is not surprising, given that the subcortical volume GWAS 
is controlled for ICV [1]. Curiously though, we find evidence of negative concord-
ance between ICV and subcortical structures. This is likely due to non-linear differ-
ences in ICV that are not fully accounted when adjusting subcortical brain volume 
GWAS with ICV as a linear predictor [10]. Among subcortical structures, we found 
that there is a positive concordance (but no effect when compared with ICV).  
 
One distinct advantage of pairwise comparisons of traits with CIA is the ability to 
identify specific SNPs with pleiotropic effects. An extension of this idea is then to use 
the GWAS of a trait as part of a Bayesian prior for a related trait, to boost the power 
to detect effects. When looking at the comparison with the most significant evidence 
of pleiotropy (Putamen | Caudate) with a conditional FDR approach, we were able to 
identify 17 additional significant loci. The top loci (rs4888010) is an intergenic SNP 
on chromosome 16q22.3 [11], but further analysis of this and the other 16 loci is nec-
essary, to better understand potential mechanisms that may influence putamen vol-
ume. All of these models are performed in the context of common genetic variants 
commonly known as SNPs. It is likely the case that further contributions to genetic 
overlap common from other forms of genetic variation like copy-number variants 
(CNVs) or insertions/deletions.  
 
Applying CIA to other traits including those involving neuropsychiatric disease risk 
will help to quantify the genetic overlap between brain-related phenotypes and brain 
disorders and may provide a cost-effective method to screen potential endopheno-
types with existing data. Further, CIA combined with conditional FDR may identify 
new susceptibility loci for neuropsychiatric disease risk that would have previously 
been undetected. 
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