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Abstract 

 
Traumatic brain injury (TBI) can disrupt the white matter (WM) 
integrity in the brain, leading to functional and cognitive disruptions 
that may persist for years. There is considerable heterogeneity within 
the patient group, which complicates group analyses. Here we 
present improvements to a tract identification workflow, automated 
multi-atlas tract extraction (autoMATE), evaluating the effects of 
improved registration. Use of study-specific template improved 
group classification accuracy over the standard workflow. The 
addition of a multi-modal registration that includes information from 
diffusion weighted imaging (DWI), T1-weighted, and Fluid-
Attenuated Inversion Recovery (FLAIR) further improved 
classification accuracy. We also examined whether particular tracts 
contribute more to group classification than others. Parts of the 
corpus callosum contributed most, and there were unexpected 
asymmetries between bilateral tracts. 

 
1 Introduction 

 
Traumatic brain injury (TBI) is the leading cause of death and disability in children 
and adolescents. TBI can cause extensive white matter (WM) damage, which can still 
be detectable years post-injury. Diffusion weighted imaging (DWI) is useful in 
studying WM disruptions caused by brain injury, offering a non-invasive means to 
assess possible diffuse axonal injury (DAI). DAI is frequently associated with poor 
outcome, but can only be definitively diagnosed post mortem 1. The structural damage 



and considerable heterogeneity within the TBI patient population can complicate 
brain imaging studies, especially inter-subject registration. Here we evaluated 
improvements in a DWI analytical workflow, automated multi-atlas tract extraction 
(autoMATE). We use study specific templates, and register images using information 
from three modalities (DWI, T1, and FLAIR) instead of one.  

Fluid-Attenuated Inversion Recovery (FLAIR) is often collected in TBI research 
due to its sensitivity to lesions. The long inversion time (T1) of FLAIR suppresses the 
signal from CSF leading to improved differentiation of lesions relative to some T2-
weighted sequences 2. DWI has been applied in TBI research fairly recently, offering 
better anatomical resolution than conventional CT for detecting and localizing 
ischemia, DAI, and other TBI-associated neuropathologies 3, 4. T1-weighted imaging 
provides a high-resolution anatomical scan that offers a standard target for 
registration. By combining information from all three modalities, we hoped to 
leverage the benefits of each, resulting in a more accurate registration.  

AutoMATE has been used to analyze WM integrity following TBI, and performs 
well even in injured tissue 5, 6. Here we sought to improve the workflow further. We 
tested the initial workflow and compared it with an intermediate workflow with one 
alteration, and the final process with two alterations on the same dataset of 31 
moderate-to-severe TBI (msTBI) patients and well-matched healthy controls. 
 
2 Methods 
2.1 Subjects and Image Acquisition 

TBI participants were recruited from 4 Pediatric Intensive Care Units (PICUs) at 
Level 1 Trauma Centers in Los Angeles County. Healthy controls, matched for age, 
sex, and educational level, were recruited from the community through flyers, 
magazines, and school postings. Participants were studied in the post-acute phase (2-6 
months post-injury). We included 31 TBI participants (7 female, 14.3 average age) 
and 40 controls. Inclusion criteria: non-penetrating moderate-severe TBI (intake or 
post-resuscitation Glasgow Coma Scale (GCS) score between 3 and 12, or higher 
GCS with positive imaging findings), 8-18 years old at injury, right handed, normal 
vision, English proficiency. Exclusion criteria: history of neurological illness or 
injury, motor deficits or metal implant preventing safe MRI scanning, history of 
psychosis, ADHD, Tourette’s, learning disability, mental retardation, or autism. 

Participants were scanned with 3T MRI (Siemens Trio) with whole-brain 
anatomical and 66-gradient diffusion imaging. Diffusion-weighted images (DWI) 
were acquired with the following acquisition parameters: GRAPPA mode; 
acceleration factor PE=2; TR/TE=9500/87 ms; FOV=256x256mm; isotropic voxel 
size=2 mm. 72 images were collected per subject: 8 b0 and 64 diffusion-weighted 
images (b=1000 s/mm2).   
 
2.2 Tractography 

AutoMATE (automated multi-atlas tract extraction) is described fully in prior 
papers 7-9. Briefly, autoMATE labels tracts of interest from the whole brain 
tractography based on template atlases. While many tract labeling tools use only a 
single template, the strength of autoMATE is that it uses 5 templates, increasing the 
robustness and generalizability of results. Raw DWI images were visually checked for 



artifacts, resulting in 2 participants being excluded from all analyses due to extensive 
slice dropout (not included in above participant count). DWI images were corrected 
for eddy-current induced distortions using the FSL tool “eddy_correct” 
(http://fsl.fmrib.ox.ac.uk/fsl/). DWI scans were skull-stripped using FSL tool “BET” 
(default parameters). Eddy correct deformations were applied to the gradient vectors. 
Fractional anisotropy (FA) measures the degree to which water is diffusing 
preferentially in one direction (along axons). MD (mean diffusivity) is a measure of 
the average diffusivity across all 3 primary eigenvectors. RD (radial diffusivity) is the 
average of the eigenvalues corresponding to the 2 non-primary eigenvectors, and AD 
(axial diffusivity) is the eigenvalue corresponding to the primary eigenvector. FA, 
MD, RD, and AD maps were computed using FSL tool “dtifit”. Whole-brain DWI 
tractography was performed with Camino (http://cmic.cs.ucl.ac.uk/camino/). The 
maximum fiber turning angle was set to 35°/voxel to limit biologically implausible 
results, and tracing stopped when FA dropped below 0.2, a threshold that is somewhat 
standard in the field. 
 
2.3 Fiber Clustering and Label Fusion 

The standard autoMATE templates are 5 WM tract atlases constructed from 
healthy 20-30 year olds, as detailed previously 7-9. These templates will be referred to 
as the standard template. For this project, we also constructed 5 new WM atlases 
from 5 adolescents in the study (2F/3M, 14-18 years old, all healthy controls). These 
templates will be referred to as the study specific template. The atlas used to identify 
tracts in the templates was based on the “Eve” brain atlas 10, and includes 19 major 
WM tracts: the bilateral corticospinal tract, bilateral cingulum, bilateral inferior 
fronto-occipital fasciculus, bilateral inferior longitudinal fasciculus, bilateral uncinate, 
bilateral parahippocampal cingulum, left arcuate fasciculus (the right arcuate is too 
asymmetric for population studies to be practical 11), and corpus callosal tracts 
divided into 6 segments – frontal, precentral gyrus, postcentral gyrus, parietal, 
temporal, and occipital. The Eve atlas was registered, linearly and then non-linearly, 
to each subject’s FA map using ANTs (Advanced Normalization Tools 12) and its 
ROIs were correspondingly warped to extract 18 tracts of interest for each subject 
based on a look-up table 10. ROI registration was visually checked for all subjects, and 
all passed quality control. While registration is difficult in injured brains, the 
registration tools in the ANTs library have been shown to work well 13. 

Basic registration: Each subject’s FA map was further registered non-linearly 
using ANTs SyN to each of the 5 standard templates. Intermediate registration: 
Each subject’s FA map was further registered non-linearly to each of the 5 study 
specific templates. Multi-modal registration: Each subject’s averaged b0, FLAIR, 
and T1-weighted image (T1w) were registered linearly then non-linearly to each of the 
5 study specific template’s b0, FLAIR, and T1w images respectively. Since each 
modality provides an improved resolution and is sensitive to different aspects of brain 
structure, they are expected to contribute different information during the registration 
process. First, each subject’s FLAIR and T1w images were linearly registered to their 
averaged b0 image using the FSL tool “flirt” bringing all three modalities to a 
common space. ANTs SyN was then used to perform a multi-channel registration 
to simultaneously warp three images from each subject to the corresponding template 
images. The T1w images were registered using a cross-correlation coefficient (CC) 



similarity metric and was also weighted the highest as it provided the best resolution, 
followed by FLAIR images registered using mutual information (MI) and weighted 
2nd highest, and lastly the b0 images were registered using MI and weighted the least. 
The transformations were then applied to each subject’s FA map, resulting in finely 
registered FA images to each of the 5 study specific templates. This is shown in 
Figure 1. All registrations were visually inspected for quality, and all passed quality 
control. At this point there are 3 separate processing streams. For each processing 
stream, the 18 tracts from each atlas were then warped to the subject space based on 
the deformation field from the above-referenced registration steps 14. We refined fiber 

extractions of each tract based on the distance between the warped corresponding 
tract of each atlas and the subject’s fiber candidates from ROI extraction. Individual 
results from the 5 atlases were fused. We visually inspected the resulting fiber 
bundles. For each of the 18 WM tracts, we selected one example subject to display 
group analysis results (this step was consistent across processing streams). We 
extracted FA, MD, RD, and AD along the tracts at this point, output as 8155x15 
matrices, with each point in the matrix corresponding to tract coordinates. 
 
2.4 Support Vector Machine 

Support vector machines (SVMs) 15 are one popular form of supervised learning 
model that we used to classify our connectivity features, to differentiate connectivity 
patterns in TBI and normal development. Clearly other machine learning models are 
possible, but here we chose SVMs as their properties are well understood. SVMs 

Figure 1. (a) Each subject’s b0, FLAIR, and T1-weighted image are first linearly then non-
linearly registered to its respective atlas image. (b) This step is repeated for each of the five 
atlases. (c) The resulting transformations are then applied to each subject’s FA image, 
resulting in an FA image finely registered to each of the five atlas FAs. 



classify 2-class data by training a model, or classification function, to find the optimal 
hyperplane between the 2 classes in the data. Let xi ∈ ℝ𝑑 represent the connectivity 
feature vectors, where d is the dimension of the feature set of interest and Yi = ± 1 be 
their label with -1 and 1 representing TBI and control. Our target hyperplane is: 

〈w,x〉 + b = 0, 

where w∈ ℝ𝑑  should separate as many data points as possible. We find this 
hyperplane by solving the L2-norm problem: 

       arg min
𝑤,𝑏,𝑣

!
!

𝑤,𝑤  + 𝐷 𝑣𝑖
!

𝑖 ,  

such that  

yi(〈w,xi〉 + b) ≥ 1 - vi, vi ≥ 0 

where vi are slack variables and D is a penalty parameter. In many instances, a 
hyperplane cannot be found that completely separates the 2 classes of data, and slack 
variables are added to create soft margins to separate most of the points. 

Our classification design was to test the information provided by the point-wise 
WM integrity estimates with repeated stratified 10-fold cross-validation 16. We 
repeated the cross-validation 10 times. Each repeat represents a different random 
grouping of dataset for 10-fold cross-validation. For cross-validation (CV), our 
performance metrics were balanced accuracy (average of sensitivity and specificity), 
accuracy (number of correctly identified subjects divided by the total number of 
subjects), sensitivity (true positives [TP] divided by total positives), specificity (true 
negatives [TN] divided by total negatives), and F1 (2 * ((precision * sensitivity) / 
(precision + sensitivity)), where precision is TP divided by total positive calls). We 
used the linear SVM implementation in scikit-learn 0.16.1 (http://scikit-learn.org/) 
with the default parameters. The input for the SVM was the point-wise estimates of 
FA, MD, RD, and AD across all tract indices, input as 8155x15 matrices for each 
subject.	
 
3 Results 
 
We calculated the average displacement across all subjects, across all 5 template 
atlases, across the whole brain, for each of the 3 registrations tested. For the single 
channel registration with the standard templates, the average displacement magnitude 
across all subjects was 3.0%. For the single-channel registration with the study 
specific templates, the average displacement magnitude across all subjects was 3.1%. 
For the multi-channel registration with the study specific templates, the average 
displacement magnitude across all subjects was 3.7%. As another check of 
registration, we extracted the volume of the thalamus in native space and compared it 
to the volumes extracted after each transformation. This was done across 10 healthy 
controls. The average difference in thalamic volume between native space and each of 
our 3 registrations was: basic – 4.2%, intermediate – 2.3%, multi-modal – 3.1%. The 
average difference in thalamic volume between each registration step was: basic vs. 
intermediate – 2.1%, intermediate vs. multi-modal – 5.6%. 
 



3.1 Study specific template – intermediate registration  
The creation of a study specific template was the first improvement to the workflow. 
The standard autoMATE templates are taken from 20-30 year old healthy controls, 
while the study specific templates include 5 14-18 year olds (2F/3M, all healthy 
controls). Use of a more age-appropriate template, taken from the sample, improved 
nearly all measures of group discrimination across FA, MD, and RD. SVM based on 
AD gave mixed results. The classification outputs can be seen in Table 1. T-tests of 
the 10 CV repeats showed these improvements were largely significant. 
 
3.2 Multi-modal registration 

The second improvement to the workflow involved the inclusion of multiple 
image modalities for the template registration, as well as the same study specific 
templates used in the intermediate registration. This step brought further improvement 
to the classification outputs for all measures. These results can be seen in Table 1. T-
tests of the 10 CV repeats showed the improvements over single channel were only 
significant for one measure (indicated in bold in the table), but over the original 
registration they were highly significant (indicated in italics in the table). 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3.3 Most robust tracts 

The analysis to this point was completed using all tract data, but we were 
interested to see whether specific tracts aided in classification more than others. We 
ran a separate classification examining each tract alone. For this, we ran SVM as 
above, but with data from each tract separately input into the SVM. The balanced 
accuracy across all 19 tracts is depicted in Figure 2, averaged across the tract. We 

  Single channel registration / Standard template 
  BAC Accuracy Sensitivity Specificity F1 

FA 0.7995 0.8039 0.8640 0.7350 0.8222 
MD 0.7621 0.7692 0.8525 0.6717 0.7992 
RD 0.7823 0.7892 0.8670 0.6975 0.8143 
AD 0.7475 0.7580 0.8525 0.6425 0.7920 

  Single channel registration / Study specific template 
  BAC Accuracy Sensitivity Specificity F1 

FA 0.8012 0.8118 0.8850 0.7175 0.8414 
MD 0.8004 0.8043 0.8350 0.7658 0.8228 
RD 0.8042 0.8132 0.8775 0.7308 0.8405 
AD 0.7325 0.7520 0.8775 0.5875 0.7978 

  Multi-modal registration / Study specific template 
  BAC Accuracy Sensitivity Specificity F1 

FA 0.8038 0.8146 0.8900 0.7175 0.8437 
MD 0.8104 0.8143 0.8450 0.7758 0.8328 
RD 0.8029 0.8134 0.8875 0.7183 0.8432 
AD 0.7379 0.7751 0.8850 0.5908 0.8031 

Table 1. Comparison of SVM outputs from the basic, intermediate, and multi-modal 
registration protocols. Bolded entries are significantly improved over the previous step, 
italicized entries for the multi-modal step are significantly improved over the initial step, 
as shown in t-tests of the 10 CV repeats. 

 



computed this on FA, MD, RD, and AD, but we display results here only for RD. The 
CC frontal, CC postcentral, and right inferior longitudinal fasciculus (ILF) had the 
highest BAC. There appeared to be an asymmetry as well, with right hemisphere 
tracts having higher average BAC than left hemisphere tracts (0.664 vs. 0.615). 

 
4 Discussion 

 
TBI can cause widespread damage to the brain, but the pattern of injury can differ 

based on severity, location, type, and any number of unknown premorbid patient 
characteristics. This heterogeneity can complicate inter-subject registration, which is 
critical for accurate and generalizable results. Here we aimed to improve this step, by 
including templates generated from subjects in the study, and by using a multi-modal 
registration. 

Using study-specific templates improved the classification accuracy from resulting 
tract-wise WM integrity measures. This is an expected outcome, as templates matched 
for age and scan protocol should be more similar to the patient images to be 
registered. The images we selected for the multi-modal registration were chosen for 
their particular sensitivity to detecting pathology caused by brain injury. Conventional 
MRI (T1w) identifies lesions more accurately than computed tomography (CT) does. 
DWI can indicate possible DAI, ischemia, and demyelination post-injury. FLAIR, one 
of the sequences most commonly used by neuroradiologists for clinical purposes, can 
detect contusions, edema, and subarachnoid and intraventricular hemorrhage 17. Other 
researchers have used multi-modal approaches for segmentation and registration 18-20. 
Creating study-specific templates and choosing disease-specific sequences tailors this 
workflow to the study of TBI and improves our ability to study its effects on the 
brain. 

We also examined how tracts differed in their individual contributions to the 
classification, finding considerable variation in classification accuracy across the 
tracts. The tracts with the highest balanced accuracy were the CC frontal segment, CC 
postcentral gyrus, and right ILF. The corpus callosum is one of the most well-

Figure 2. Balanced accuracy (BAC) across the 19 tracts computed from MD along tract. 
Colors correspond to BAC, according to the legend. 
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documented areas of disruption following a brain injury, so it is not surprising that 
callosal segments had high BAC 21. Of our 31 TBI patients, 3 had large space 
occupying lesions on the left hemisphere 1 had a large lesion on the right hemisphere, 
10 had small lesions on either the right or left hemisphere, and the remainder had no 
visible lesions. These large left hemisphere lesions likely increased the within-group 
variance, affecting the accuracy classification based on information from left 
hemisphere tracts.  
 
5 Conclusion 
 

We present step-wise changes to the DWI processing workflow, including use of 
study-specific templates and incorporating information from multiple modalities 
when registering images. Each step improved on the previous method in our ability to 
accurately classify subjects, ending with accuracy around 0.81 for FA, MD, and RD. 
Additionally, we show that certain tracts aid more in this classification than others, 
with the CC frontal segment, CC postcentral gyrus segment, and right ILF emerging 
as providing the most discriminative information. This improved workflow will aid us 
in further multi-modal investigations of recovery following pediatric TBI. 
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