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Abstract (243 words)

In this review, we discuss recent work by the ENI&/Monsortium (http://enigma.ini.usc.gdua global alliance
of over 500 scientists spread across 200 institatio 35 countries collectively analyzing brain gimay, clinical,
and genetic data. Initially formed to detect genitfluences on brain measures, ENIGMA has gronover 30
working groups studying 12 major brain diseasepdmiling and comparing brain data. In some of thgelst
neuroimaging studies to date — of schizophrenianaajdr depression — ENIGMA has found replicabledse
effects on the brain that are consistent worldwédeywell as factors that modulate disease effecigartnership
with other consortia including ADNI, CHARGE, IMAGEAhd others ENIGMA’s genomic screens — now
numbering over 30,000 MRI scans — have revealézhat 8 genetic loci that affect brain volumes. Detkeam
of gene findings, ENIGMA has revealed how theséviddal variants — and genetic variants in generalay
affect both the brain and risk for a range of diesaThe ENIGMA consortium is discovering factorat t
consistently affect brain structure and functioat thill serve as future predictors linking indivadibrain scans
and genomic data. It is generating vast pools ahative data on brain measures — from tens of Hwis of
people — that may help detect deviations from nbdaaelopment or aging in specific groups of sutgewe

1 Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative (http://www.adni-info.org);
CHARGE, the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium

(http://www.chargeconsortium.com); IMAGEN, IMAging GENetics Consortium (http://www.imagen-
europe.com).



discuss challenges and opportunities in applyiegélpredictors to individual subjects and new dshas well
as lessons we have learned in ENIGMA's effortsaso f

Introduction

Here we provide an update on the progress of tH&EM consortium, a global alliance of over 500 sitists
from over 200 institutions in 35 countries to stuogin imaging data worldwide, discovering facttbrat
modulate brain structure, integrity, connectivand patterns of brain differences in major brasedses.
Founded in 2009, ENIGMA's initial aims were to parh genome-wide analyses to identify common vasiamt
the genome that are reliably associated with noua@ability in brain structure. Since the initiffort
discovered consistent effects worldwide of genedigants that explained less than 1% of the vagandrain
measures (Stein 2012; Hibar 2015), over 500 seisritiave joined ENIGMA. ENIGMA is now (as of Octobe
2015) a worldwide consortium, organized into ovemsrking groups, studying major brain diseasetafia at
http://enigma.ini.usc.edu). The work in ENIGMA iwided into projects on (1geneticsscreening genomic data
for predictors of individual variations in braimstture, function, and connectivity; (@jseasescreening brain
measures to identify patterns of differences innttagor brain diseases and factors that affect tlzem;(3)
methods developmemMew “Big Data” methods are being developed anglémented around the world to
perform genetic analysis of high-dimensional feadithat arise in neuroimaging — such as brain mésaar
“connectomes” (Sporns 2005), 3D or 4D maps of bch@nges over time, and more complex imaging data f
functional MRI and EEG/MEG.

For this issue oNeurolmagewe review the work ENIGMA has done, and how iate$ to making individual
predictions to support the emerging disciplingcision medicine where personalized medical decisions are
made considering an individual’s genetic make-tiperorisk factors, and the large body of scienkfiowledge
detailing genotype-phenotype relationships. ENIGKIg4énetic and disease-related studies are disogvesw
factors that affect the brain throughout life, hitve diseased brain differs from the healthy braind how
patterns of brain measures differ from one diseéasmother. The potential to use machine learniathods in
this context is vast, and we point to future oppoittes and challenges, and what we have learmeddy about
how individual genetic variants and diseases affexbrain.

One major thrust of ENIGMA'’s work is genomics, se first review studies that discovered individuadilin the
genome that are linked to variations in brain gtmec(Stein 2012; Hibar 2015). The effect of thessmmon
genetic variants tends to be small, but the ag¢gegféect of thousands of them accounts for a sunist
proportion of the variance in brain measures (T200d4; Ge 2015; Chen 2015). The relevant genes&an b
difficult to discover in individual cohorts, butdii can be detected by meta-analyzing data acrokpimsites.
We discuss multivariate and machine learning methmagded to combine some of these predictors ie mor
powerful models that can make valuable predictadmsut individuals, such as predicting deviatioasfmormal
lifetime aging, risk for mental iliness, or recoydrom trauma.

Reproducibility. There have been numerous recent surprises regdtgingature of gene effects on the brain,
including surprisingly poor reproducibility of caiddte gene effects on imaging measures and riskéntal
illness, and the very large sample sizes needeslitdly detect any genetic associations at aleréhhave also
been dramatic claims of poor reproducibility ofdimgs in genetics, neuroimaging, and neuroscietushes in
general (Button 2013; loannidis 2014). Meta-anaysach as those conducted by ENIGMA, have begropeul
as a way to screen for false positive findingsldims of “significance chasing” and “fishing” irearoscience
studies are true (loannidis 2014), then prediatiaelels based on them should fail more often thadetsdased
on meta-analyzed studies of large numbers of intdg@ cohorts, analyzed in a harmonized way (Wiade a
Munafo, 2015). ENIGMA is dedicated to replicatiamdaa number of initiatives are underway to devefmgihods
to replicate imaging genomics findings.



We discuss factors that affect reproducibility afdrls that predict specific gene effects on thenbracluding
technical factors of image acquisition and analylsisv effect sizes for individual predictors makengtic effects
hard to detect, so meta-analysis is valuable inathastnating effects that no single cohort can dedadts own.
Clearly, if we build a model to classify a persaotoia certain diagnostic group, based on a seteafigtors, we
also need to know how to decide if we have measimegredictors well enough, or if the context vehdre
model was fitted is similar enough to the currétutation for the prediction to make sense and loeirate. Apart
from the choice of predictive model and predicttinsye are many other reasons why imaging or geneidels
of diagnosis or prognosis may generalize poorlyairat all, depending on the context. Factorsalffatt model
prediction will include age and environment, anel d@mographic history of the populations sampleeksé¢ may
affect whether or not a predictor is relevant teeav cohort or an individual. In the ENIGMA studisslow, we
point to examples in which predictors in the gen@mné image would be valuable in making individual
predictions about brain volume or about a persdi@gnosis, but only in certain contexts, such asemain parts
of the lifespan, or only after considering certedmfounds or variables that are known to driverbdifferences
(duration of medication and duration of illness aften confounded, and modeling each effect indégetly may
produce paradoxical conclusions, e.g., that medicas bad for the brain). Individual predictive deds are
likely to become increasingly nuanced, as we fintlnnore about how predictors interact and contexkisre
different models work best.

In the course of ENIGMA's efforts, a vast quantifynormative data has been gathered and analyasd fr
different countries and continents of the worldpwaing us to make some inferences about the notmajglctory
of brain development and aging (ENIGMA-Lifespanniai 2015a,b). We discuss the challenges and
opportunities in using models based on these datsake assertions about individual and group deviatfrom
normal, or to generate cohort, or national noriithdy exist and if their value outweighs the castgenerating
them.

We also discuss several concepts that have inat¢lasgower of ENIGMA to find factors with very slina
effects on the brain, including how we assess tiemerality and extensibility to new cohorts.

1. ENIGMA’s Genetic Studies.

By December 2009, many researchers worldwide hielcted genome-wide genotyping data from cohorts of
subjects for whom brain imaging information sucltanatomical MRI were available.

It had long been presumed that genetic and envieatahfactors, and the complex interactions ambegt play
a role in shaping brain structure. Decades of vimtiehavioral and medical genetics had convincisdigwn
that many of the major brain diseases — from Alztegis and Parkinson’s disease to psychiatric ileessuch as
schizophrenia and major depression — had a strddig\ae genetic component. Similar genetic risksebor
neurodevelopmental disorders such as autism. Evestigdies of identical twins who share the sanmoge
show that genetic factors do not fully accountdizease risk, and discordant twin pairs provideaale
information about the impact of environmental ap@enetic factors on disease (Munn 2007). Furthegmo
many common disorders are likely to reflect a celfetion of modest gene differences acting in caneegich
smaller individual studies are unlikely to findstead, larger studies that capture heterogeneity hegun to
unravel the influence of multiple ‘low level’ mindwut important gene differences on disease exegkbpez
2015).

As high-throughput genotyping methods became availgenome-wide association stud{€@WASs) began to
reveal specific sources of risk in the genome éwesal major brain diseasdsdure 1). To fully appreciate this
kind of study, we need to understand that muclh®fenome is invariant between humans (Rosenb@&2).20
Many kinds of individual genetic variations - commar rare - can occur, including polymorphismseitisns



and deletions of genetic material, loss or retentibhomozygosity (LOH/ROH), or copy number vaiiats
(CNVs) - where the number of copies of pieces aiogeic material differ from the normal two allelessome
individuals but not others. Polymorphisms are amom marker of individual differences, where a singl
nucleotide polymorphism (SNP) is essentially agiretter” change in the genome: a change in giesibase
pair between individuals.

Some genomic changes interfere with the viabilftthe organism, leading to very low frequenciethia
population. Others remain and some have a moderatevere impact on a person’s health, or thdirfds
disease. For example, a common variant (preseinirirl00 in the general population) in tHEE gene impairs a
person’s ability to metabolize iron. Excessive itevels can then accumulate in bodily organs, whinh cause
liver and kidney failure. Multiple deletions in tB2q region of the genome provide another exanipdidviduals
with these deletions have a characteristic neureldpmental profile associated with mild to sevdyeamalities
in the face, brain, and heart, and are at heigbtesk for schizophrenia and autism. 22q deletmrcur
frequentlyde novg so they do not really remain in the populatiather 229 is a vulnerable spot in the genome
for mutation. Even so, 22q deletion syndrome —@thdr neurogenetic disorders such as Fragile Xjaifis
syndrome, and Turner syndrome — have often beeinest to help identify potential mechanisms thay ma
contribute to more prevalent psychiatric conditidBslIGMA’s 22q working group has been set up toarsthnd
brain differences associated with deletions atltias, and how they relate to those found usiegtme
analysis protocols in ENIGMA-Schizophrenia and ENI&Autism.

Genetic risk for many major psychiatric illnesseghiought to be mediated in part by common geweti@nts
that have persisted in human populations for thodssaf years. In many cases, the adverse effeclis@dse risk
genes — such as the Alzheimer’s risk g&xfRQE— are not apparent until later in life (Hibar 2D1Because of
this, the variants tend to be preserved in the genéand continue to drive disease risk worldwide.

Geneticists continue to debate the relative coumtioin of common versus rare genetic variants tofos various
diseases, but a recent large-scale screen of gthigia patient cohorts worldwide implicated ov@® henetic
loci in risk for the disease (Ripke 20Hgure 1). This highly successful study pointed to sevgaales in the
dopamine neurotransmission pathway that had loeg beplicated in schizophrenia and its treatmdat -
example, a functional polymorphism in tb&D2 promoter region, which modulates levels of gena&sgion,
and affects antipsychotic drug efficacy (Zhang Btadhotra, 2013). This same genomic screen poirdaxder
unexpected genetic variants in immune system pathiveat offer tantalizing new leads about disease
mechanisms, and the role of modifiable factorsvengéually treating or averting the iliness. Simiddorts in
bipolar illness, major depression, and ADHD uncedegenes driving risk for these disorders thatlapged to
some extent with those for schizophrenia and waitheother (Cross Disorders Working Group of thecRstric
Genomics Consortium, 2013). Members of the ENIGM#sbrtium have recently demonstrated the usefulness
of polygenic risk scores for schizophrenia (basethe 108 loci shown in Fig. 1A) in revealing as@sation
between early cannabis use and brain maturatidngladolescence — replicated in three samples ¢Rrenal.
2015).



A. Schizophrenia (Psychiatric Genomics Consortium, Nature, 2014) D. Subcortical volumes (Hibar et al., Nature, 2015)
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Figure 1: Recent genome-wide association studies (GWAS) of brain disorders and brain structure. Part A shows the
Manhattan plot from a 2014 Nature meta-analysis conducted by the Psychiatric Genomics Consortium. The genetic
variants are presented on the x-axis, and the height of the dots shows the strength of association between each
genetic variant and schizophrenia. A negative log p-value scale is used: higher points denote stronger associations.
The group identified 108 schizophrenia-associated genetic loci in a sample of 34,241 cases and 45,604 controls (red
line = genome-wide significance level, conventionally set at p= =5x10® ; green SNPs = polymorphisms in linkage
disequilibrium with index SNPs (diamonds), which indicate |ndependent genome-wide significant signals). Part B 26
loci significantly associated with risk of Parkinson’s Disease (Nalls et al., 2014), in 13,708 cases and 95,282 controls
(red SNPs = genome-wide significant signals). Part C 19 loci significantly associated with risk of AD, in a sample of
17,008 cases and 37,154 controls (Lambert et al., Nature Genetics, 2013; genes identified by previous GWAS are
shown in black; newly associated genes in red; red diamonds indicate SNPs with the smallest overall p-values in the
analysis). Part D shows genome-wide associations for eight subcortical structures, conducted by the ENIGMA
consortium in 30,717 individuals from 50 cohorts worldwide (Hibar et al., Nature, 2015). This study identified five
novel genetic variants associated with differences in the volumes of the putamen and caudate nucleus and stronger
evidence for three previously established influences on hippocampal volume (see Stein et al., Nature Genetics, 2012)
and intracranial volume (see Ikram et al., Nature Genetics, 2012). Each Manhattan plot in Part D is color-coded to
match its corresponding subcortical structure shown in the middle row. The grey dotted line represents genome-wide
srgnrfrcance at the standard p= =5x10"%; the red dotted line shows a multiple-comparison corrected threshold of p=7.1 x

. [Images are reproduced here wrth permission from MacMillan Publishers Ltd (Nature Genetics, 2012 & 2013;
Nature, 2014 & 2015) and with permission from the corresponding authors.]
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Many successful genomic screens involve over 1@0idividuals. For example, the most recent GWAS of
height, educational attainment, and body mass ifi#bX) identified 56 novel BMI-associated loci insample

of up to 339,224 individuals (Locke 2015). Simiarthe Psychiatric Genomics Consortium’s discoary
genetic loci implicated in schizophrenia risk t@lquantum leap’ once the sample sizes exceed®@d0 HRipke
2015), after less successful searches in smaleplea. Several factors may contribute towardsrtbed for large



sample sizes in genome-wide association. Firstethee biological variation and ascertainment défifees
among cohorts. A person diagnosed with a spedlifiess may have other co-morbid illnesses, andndistic
criteria may vary somewhat worldwide in terms ofoat included in the groups of patients and coatrol

However, the main reason GWAS needs large sangpl@swver: a genome-wide association analysis coegris
approximately a million independent tests, so aghold ofp < 5 x 10° is employed to minimize false positives.
Early GWAS estimated their required sample sizeeth@n published effect sizes of candidate gersehtve
since been shown to be greatly overestimated. Aghdhe genetic architecture of each trait is usjdar most
complex traits the effect sizes of individual SN#Ps typically less than half a percent (Franke 20Ibus, it
follows from power analyses that GWAS and GWAS natalyses typically require data from tens of tlamas
of individuals.

In the imaging field, initial studies also attengbgenome-wide screens of brain imaging measureh, asibrain
size (Paus 2012), the volume of the temporal lamelIRI (Stein 2010), in cohorts of around 800 satgdsee
Medland 2014, for a review). This type of analyssame feasible as large cohort studies, sucteas th
Alzheimer’s Disease Neuroimaging Initiative (Ja€d ), started to put their images and genomic olaliae. In
line with accepted practice in genetics, it is oosdry to require replication of such genetic efféntindependent
cohorts.

While some effects appeared to replicate, moshdidis the studies were underpowered, and it welsam
whether cohort factors, biological differencestamhnical factors were to blame.

1.1 Endophenotype Theory and PowerAs the field of imaging genetics grew, some reseens hoped that
imaging might offer a more efficient approach teadiver genes involved in mental illness. The reésothis
optimism was based on the observation that marig breasures are consistently reported as affented i
psychiatric cohort studies (see later, urietGMA Disease Studigsso they could maybe serve as quantitative
traits, or markers, correlated with the illness.

There was also some hope that the biological signamages — measures of neurotransmitters, rexsept
metabolite levels, blood flow, the volume of spéze brain areas such as the hippocampus, ohésiical
content — might be influenced by genetic variaetsaoise of their proximity to primary gene actiorkelwise, it
was argued that brain-derived measures may hawepdes genetic architecture — perhaps with feweniidual
genes or pathways influencing them — comparedearthititude of factors driving a person’s overakrfor
developing a disease (Saykin 2015). Brain measusgsalso offer a more precise or reproducible diato
scale. Potkin (2009) noted that GWAS can be mdreiefit when they analyze continuous measures (asch
brain volumes) rather than binary traits, suchiagrbsis, which may also disguise complexities sagho-
morbidity, etc.

This endophenotype thedried to confidence that genome-wide screening aihbmeasures would yield “hits” —
genetic loci consistently associated with brain soees — relatively efficiently and, some believiadnuch
smaller samples. Several countervailing argumerasld also be considered. The genetics of braits tnaay
reveal common pathways involved in a number of alghtesses, but one loses some specificity whewing

2 The term “endophenotype” was coined by John and Lewis (1966); in psychiatric genetics, it is used
to denote a biomarker that fulfils several criteria (Gottesman and Gould, 2003; Glahn 2014),
including heritability, reproducible measurement, segregation with illness in families and in the
general population, and state-independence - it must remain stable when a patient’s illness is active
or in remission. Others used the term “intermediate phenotype” for the brain measures studied in
imaging genetics, as the endophenotype refers to the characteristics that are shared by both patients
and their unaffected first-degree family members.



from a psychiatric disorder to brain measures fediht disorders may have very similar brain abraditias. For
this reason, ENIGMA'’s Disease Working groups havalyzed tens of thousands of brain scans to seehwhi
measures best distinguish patients from control®sa a range of 12 diseases, with a view to utateiisg
similarities and differences. Collecting brain irragdata is more expensive than diagnostic testilgp, genes
that affect brain measures may be of less intéoes{patient or physician unless they are also ected to
disease risk or prognosis. In ENIGMA, however, ¢bsts of collecting the imaging data had alreadynbe
incurred, making the feasibility of a large-scabalgsis the main consideration. Others voiced aedhoptimism:
Munafo and Flint (2014) noted that effect sizesgene effects on neuroimaging data were not litelye any
greater than for any other trait, but the valustirdying them came from the ability of brain measuo help
understand mechanisms that might underlie assoegabetween genes and more conventional traitsa(see
Flint 2014). Yet, the potential to find genetictias that jointly influence risk for mental illneaad a
neuroimaging trait could dramatically improve statial power and provide an important link betwéen
genome and the behavioral symptoms used to diagrsyséiatric and neurological illnesses (Glahn 3014

In ENIGMA'’s first paper ilNature GenetigsStein and 158 authors (2012), including 4 exgstiansortia (SYS,
EPIGEN, ADNI, and IMAGEN), meta-analyzed GWAS data from cohorts worldwidé found genetic loci
consistently associated with the size of the huhippocampus and total intracranial volume. Notainyg
partnership with another consortium, CHARGE (Bi&2)) the top “hits” - the genetic variants with gpest
effect sizes - were anonymously exchanged and foubé the same, supporting the replicability @f fimdings
in completely independently designed efforts.

In a follow-up study in a larger sampl=21,151 individuals; Hibar 2015; called “ENIGMA2'8jght genetic

loci were discovered that were reliably associatgd the size (volume) of several subcortical stuues,

including the putamen, caudate, and pallidum. Withincreased sample size, earlier findings reggrtfie
hippocampus and intracranial volume were replicatadireinforced; new genetic loci were also discede
Several of the SNPs implicated lie within or clésgenes involved in cell migration, axon guidarareapoptosis

- all cellular processes likely to lead to obseflgalfferences in the size of cellular nuclei ie thrain. Parallel
work in mice by the Williams lab in Memphis beganstudy mouse homologs of these variants (Ashb2@dk);
recent data suggest that variation of the top petageneKTN1, can predict putamen volume and cell counts in
outbred mice (R. Williamgyers. commui).

Several lessons were learned from the first two@WA genetic studies, in addition to a third pairpafpers
currently in submission, involving an even largeample N>31,000; Hibar 2015; Adams 2015). First, through
meta-analyses, it was possible to detect factan®e(ISNPs) that accounted for less than 1% ofdhiance in
brain measures. This was despite the fact thgtdahecipating studies were designed with differgodls in mind,
and many used scanners of different field strengittcessed by researchers who had not all met, and
communicated through email and teleconference.calls

Much of the consistency in brain measures capédlan the ongoing refinement of standardized pobsdor
analyzing images and genomes; in turn, those potstaelied on decades of work by developers of lyidsed
and extensively tested analysis packages sucheaStifer (Dale & Sereno, 1993; Fischl 2012), and FS
(Jenkinson 2012). The supplement of the first ENKSpaper (Stein 2012) contained 104 pages of angitizsts
supporting the validity and reliability of the datlacluding tests comparing different imaging safte/ for brain
volume quantification.

3 Abbreviations: SYS, Saguenay Youth Study, http://www.saguenay-youth-study.org; EPIGEN, The
Epilepsy Genetics (EPIGEN) Consortium (Cavalleri 2007); ADNI, Alzheimer’s Disease Neuroimaging

Initiative (http://www.adni-info.org); IMAGEN, IMAging GENetics Consortium (http://www.imagen-
europe.com).



On the genomic side, the ability to compare genataia in a common reference frame depended on the
availability of the HapMap3 (The International HagpB8 Consortium, 2010) and later the 1000 Genomes
reference datasets (Genomes Project, 2010). ThEsemce panels are continually updated and refanedl
allow genotyping data collected with one kind ofgiyping array (“chip”) to be imputed to match datdlected
using others, and pooled in the same overall study.

A second issue is whether these findings could baes detected more efficiently using only somthef
samples. In a sense, this is a “meta-questioni imight the study have been designed more effilgietfiter
seeing the results?

As in any meta-analysis, the weight assigned th eabort in the final statistics can be made toedepon its
total sample size, or on the standard error ofeégeession coefficients (which is in fact what ENM& does). As
such, it is not vital for every cohort to rejece thull hypothesis on its own. In fact, any coheutly, however
small, can partner with other sites to contribotéhte discovery of effects that it cannot detegbhal In
ENIGMA1 (Stein 2012), only 5 of the 21 cohort seslwere able to detect the effect of the SNPs @brthin in
their cohort alone, at the nominal significanceelesf p=0.05. By the time of ENIGMA2, 20 of the 38 Caueasi
European (CEU) cohort studies could detect theeeffef the top SNP. Even so, the aggregate supptre
discovery and replication samples was crucial teingasure the effects were credible and unlikelpédalse
positives.

1.2 Relevance to Disease Risk.

The quest to identify genetic variants associatig rain measures is partly motivated by findiragiants that
affect our individual risk for disease. Any moduwlia of health outcomes in populations may havesaingact
on society, even if they are not the main facteaggdaning risk for any one individual. As well aexting risk
for disease, genetic differences may also affetiptym severity, treatment response, and prognosis.

As such, several clinical trials for Alzheimer'sdase drugs already stratify their cohort®A\BYDEgenotype - a
major risk gene for AD that may have a bearingreattment response as well as disease risk (seelRéitb,

for a review ofAPOEeffects, which are remarkably complex). At thediaf writing, several manuscripts are
under review addressing the overlap between ENIGM@&nomic findings and accepted or emerging maders
disease risk (Hibar 2015; Adams 2015; Franke 20Hgyxe we simply review their overall design. Sanigal
reports have appeared in abstract form, relatingirelated SNPs to risk for Parkinson’s diseagbgiH2015),
obsessive compulsive disorder (Hibar 2015), schimmpia (Stein 2015, Franke 2015), and multiplerssis
(Rinker 2015). An initial negative report has appedor epilepsy (Whelan 2015). Even so, givenlthe

fraction of heritability explained by the SNPs digered, the studies so far are widely acceptechdsrpowered.

One method to assess an individual’s relativefosklisease, based on genome-wide genotyping idatayes
computing a polygenic risk score (PRS) for eaclividdal. In Alzheimer’s disease, for example, cargyone
copy of theAPOE4genotype boosts lifetime risk for AD by a factdiB3pand carrying two copies may boost risk
by 15 times. These odds ratios are not constanss¢ruman populations and even vary by ethnicity, o
circumstances, so some caution is needed wherpeldtang them to new data; but as AD GWAS data
accumulate, over 20 common genetic variants haee find to affect AD risk — 3 of them, in the ge@é U,
PICALM, andCR1,appear to be associated with a difference in deseak of over 10% per allele. If an
individual's genotype is known for these loci,dtpossible to create a polygenic risk score inraber of
different ways, depending on whether the goal jsréalict diagnosis, outcome, or brain measures sirhplest
approach is to count risk loci, although that diemmores the vastly different odds ratios froncledocus. It is
more common to weight the loci based on their adtls for disease, or by their regression coeffitseAPOE4
for example, is just a single genotype that mighttabute to calculation of a polygenic risk sctwgether with
other risk loci. As shown by the PGC analyses ptieglictive accuracy of PRS scores increases asithéer of



variants included increases. Calculation of thesees does not need to be restricted to genomesigdéicant
loci.

Recent efforts to predict disease status basealggenic risk scores have had varied successhbutiasons are
quite well understood. First, for the most prevaleurological or psychiatric diseases, we do edtwave a set
of common variants that account for more than dldnaation of disease risk (except fABPOE4 where a single
copy may triple a person’s risk for AD, other fastbeing equal). In AD, there are rare mutationganes related
to AD pathology - such as presenilin and APP - imariably produce early-onset AD. Carriers ofsthgenetic
variants are the targets of major neuroimaginggaitivies (Benzinger 2013). A very important aspddhds -
relevant to the field gbersonalized medicineis that the person’s genotype in conjunctiorhwiinyloid imaging
can accurately predict the age of onset for theadis and the symptoms (Benzinger 2013).

Another cause for optimism is the efforts of thgdPgatric Genomics Consortium (PGC). When the PGC
Schizophrenia Working Group increased their saraizle to 36,989 cases and 113,075 controls, thepwised
over 100 loci associated with risk for schizophaesuggesting that other GWAS may experience gifbdasts,
depending on where they are in the arc of discovimg rate of success of these efforts, and yielthe efforts
invested, also depends on the polygenicity of eliedase, and the distribution of risk loci acrd&sdenome.
Holland (2015) used recent data from the ENIGMAdgtand the PGC to estimate what sample sizes adede
for a GWAS to discover enough SNPs to accountsiy,50% or 80% of the chip-based heritability, tiee
amount of the population variance predictable fganotyped SNPs. They argued that some traits are mo
polygenic than others, and that, relative to soma@bmeasures, GWAS studies of schizophrenia arjdrma
depressive disorder may require much larger sasipds to discover enough SNPs to account for egél$ of
the chip-based heritability. If that is true, theraging genetics may be well on the way to a sigaiftly higher
rate of discovery, and a more complete understgnoficommon variants driving individual differendasbrain
measures.

1.3 How much individual variance is explainable byGWAS and common genetic variants?

In recent years, a number of powerful methods eetktg estimate what fraction of the populationaace in a
trait could be predicted, in principle, from aletBNPs on the genotyping chip, even if the exactgand SNPs
were not yet knowfi Predictions can be made from the full set of dssion statistics: models (linear or
Gaussian) are first fitted to the observed effergissofall the SNPs, even if most SNP effects fail to reheh t
accepted standard for genome-wide significanceidnh the same way as FDR (the false discoverymatbod)
is used in imaging to confirm evidence for a disited signal - spread out across the brain, theathedfect of
genome-wide SNPs on a trait can be estimated wiitheing to pinpoint which exact regions - of theage or
the genome - contribute unequivocally to the effect

Hibar (2015) used genome-wide summary statistiestionate heritability (So 2011) and found that own
variants across the genome explained around 19%eaofariance in hippocampal volume, which is corapbe to
SNP-based estimates of heritability for many psstrit disorders and other biological traits. Mageently,
Bulik-Sullivan (2015) introduced a similar methaaised on linkage disequilibriniLD) scores that is also able

4 Obviously the SNPs are "known" in the sense that they are on the genotyping chip. The issue is that
we do not know exactly which specific sets of SNPs or genes are truly contributing to a trait.

5 Linkage disequilibrium is the presence of statistical associations between alleles (genomic variants) at
different loci in the genome, which arise because nearby regions on the genome tend to be inherited together.
Maps of the level of LD between adjacent SNPs on the genome have been compiled for multiple ethnic groups.
In imaging, LD leads to peaks of association with brain measures, and these LD maps can be used analytically
to estimate SNP-based measures of heritability or genetic correlations from GWAS summary statistics.



to recover heritability from summary statistics €TltD score method assigns an LD score to each ShEPsum

of its squared correlationg’ with all other SNPs in a 1 centimorgan windowe®hen regresses the chi-squared
statistics from a GWAS against the LD score fohe@bNP. The slope of the resulting regression lggetids on
the sample size and the SNP-heritability - the prtapn of trait variance accounted for by all thengtyped SNPs
(see Bulik-Sullivan 2015, for derivations).

A related method, GCTA (genome-wide complex tradlgsis; Yang 2011) suggested that a still higher
proportion of population variance in brain volunietneasures may be accounted for based on all ymaubt
SNPs, even in cases where we do not know which $MIpsas predictors of the trait. Members of thd @MA
Consortium have applied this method to estimate-8alded heritability for structural (Toro 2015) dndctional
(Dickie 2014) brain measures. A working group inl6MA, ENIGMA-GCTA, is now comparing the GCTA
and LD score methods to better estimate how muaim bariation is explainable by genotyped SNPeaxdt for
the brain measures that are most readily computed MRI. SNP-based heritability estimates of caitsurface
area for different cortical subdivisions calculaldGCTA were recently published (Chen 2015). Thastical
subdivisions were defined by a genetically baseticat parcellation scheme (Chen 2012).

The reason ENIGMA and other GWAS researchers &eedsted in measuring heritability - and ideally th
fraction of heritability explained by common gegetariants - is that it should be possible to [itie brain
measures for deeper genetic analysis based orh#rambility, reliability, polygenicity, and relence to disease.
Such rankings or “Bayesian priors” would help ifogtizing research, making studies more efficiant better
powered (Schork 2013; Becker 2015; Holland 2015ngV2015). Even so, there is no evidence that phpest
with higher heritability show stronger associationth SNPs. One such example is white matter hppensities

- a brain measure with high heritability, for whigpecific genomic risk factors have been hardrtd.firhe main
benefit of focusing on highly heritable phenotypemes from the fact that measurement error is &igitower,
and prioritizing brain measures is important asdlae so many ways to quantify brain structurefandtion.

A recurring caveat in this work is that the SNReef§ are not expected to be constant in all cohbhisy may
depend on a person’s age, environment, or othewrostances. We now know from ENIGMA2 that the tdpd@
associated with the volumes of subcortical strestuvere detectable consistently worldwide, evengheeach
one accounts for < 1% of the variance. A laterestifer age x SNP effects suggested that some ¢ewvesa
greater effect on brain measures later in life 8di®015), perhaps because they interact adverstiyotiner
biological processes or environmental stressorstiar words, although ENIGMA primarily uses metegsis
to assess evidence, we do not assume that the sifeds always the same. Heterogeneity of effiscaéso
assessed — a SNP effect important late in life nudyoe replicated in younger samples. Conversiglgesnost
psychiatric disorders occur at a young age, oneexpgct to find associations that link genetic euhbility,
brain structure and disease at a younger age efféhts that may diminish later. Moreover, for aértdisorders
such as addiction, the psychological, neurobiokiganid genetic factors most relevant at one age (e.
impulsivity or sensation-seeking in adolescentsérpenting with drugs) may be quite different frtime factors
when dependent (e.g., compulsivity or habit-basgthior) or when recovering (e.g., stress reguiatio
cognitive control). Even so, ENIGMA's genomic sareeso far are only well-powered to detect SNP &ffdat
are consistent - there may also be SNP effectaramdetected, that depend on the demographitteeafohort
assessed, or disease status, or other circumsfactiars.

This is a reminder that predictive models work lesiohorts similar to those where discoveries weagle.
Because of this concern, which to some extent &ff@t brain imaging studies - and all human stsidie
ENIGMA has diversified to over 33 countries. RebgrENIGMA partnered with other consortia such faes t
Japanese consortium, COCORO (Okada 2015); encoghageffects of psychiatric illness on brain strual
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measures were replicated in Western and Easteudgimms, not just in the structures affected thstnbut in
their rank order, showing congruence bein independent studies (van Erp 2015; Okada 20.

2. ENIGMA's Disease Studies.

After the initial success of the genetic analyssi 2015; Hibar 2015), ENIGMA investigators |
analyzed brain MRI data from well over 30,000 indinals- around a thit of the data came from patiel
with a range of psychiatric conditions. In the i GWAS studies, analyses were run with and wit
patients, and excluding patients did not affectrtfaén findings; of course the possibility remaihattsome
SNP effets may be easier to detect in some patient cqlrt€ENIGMA’s overall results were not driven
the presence of patients.

In 2012, ENIGMA formed working groups on schizoptiee(van Erp 2015), bipolar disorder (Hibar 20:
major depression (Schma15), and ADHD (Hoogman 2015); groups r-analyzing data on 8 additior
disorders have been formed since, with current sasipes detailed iTable 1, a map of participating sit:
is shown inFigure 2. In the summer of 2015, additional working grc were formed on anorexia nervo
recovery after stroke, and Parkinson’s dis¢« the current “roadmap” showing relationships betw
ENIGMA'’s working groups is shown iFigure 3 (alsosee http://enigma.ini.usc.edu for the latest sjaThe
diseases surveyed include many where controveisisen the nature and scope of disease effedtse
brain. Given this controversy, the main benefitafte-analysis is to discover which effects are stronge
most reliably found, and which dend on known or unknown factors of the cohorts asesh

@ aoHows Q) mMDDwWe

@ Avismwe @ ocows

@ Addictionws  Bipolar WG

@ 22q WG Q Schizophrenia WG 9

Q Hvwe DTIWG

¥ PTSD WG Epilepsy WG °

'I‘ = ENIGMA Cohort

Figure 2: ENIGMA Map. The ENIGMA consortium now consists of over 30 Working Groups made up of 500 scientists
from over 200 institutions and 35 countries; several of these Working Groups have several ongoing secondary projects,
led by different investigators. Here we show 12 of the working groups, focusing on specific diseases and methodologies,
including ADHD, autism, addiction, bipolar disorder, diffusion tensor imaging, epilepsy, HIV, major depressive disorder,
OCD, PTSD and schizophrenia. Centers where individuals are scanned and genotyped are denoted with color-coded pins
(legend, bottom left).
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Figure 3. ENIGMA Roadmap. The current organization of ENIGMA’s Working Groups is shown here. Several groups
relate brain measures to variation in the genome, and specialized groups are dedicated to helping members run analyses
of genome-wide SNP data, copy number variants, and epigenetic markers on the genome. In parallel, there are
psychiatric and neurology working groups dedicated to the study of worldwide data from a range of diseases. As shown
here in detail for the schizophrenia working group, there are secondary projects, to relate brain variation to specific
symptoms or clinical measures. In parallel, support groups coordinate large scale efforts to harmonize DTI (diffusion
tensor imaging) and related brain data. Partnerships between the DTI and Genomics groups are leading to genome-wide
screens of DTI measures in over 13,000 people; cross-disorder partnerships study brain features that may relate to
diagnostic boundaries, or common co-morbidities, allowing factors driving brain variations to be disentangled.

The initial goal of ENIGMA's Disease working groupas been to meta-analyze effects of these disoaher
the subcortical brain measures studied in the G\WWW8y. As scans had already been analyzed with a
harmonized protocol, and subtle genomic effectshi®ah discovered, there was some interest in rgnkin
brain measures in terms of disease effects (iféeyehces between patients and controls).

A secondary goal was to find factors that might erate how these diseases impact the brain, sueh as
person’s age, the duration or severity of illnessnorbidities, or treatment-related effects, suekvhich
medications the patients had been treated withfaritbw long. Clearly, treatment effects on theedise or
the brain depend on many factors. ENIGMA’s multiptéorts, in some cases, offered the opportunity to
gauge their generality or consistency. At the same, many groups joined ENIGMA and provided only
brain measures as their initial case-control amalyld not require genome-wide genotyping datdnein t
cohorts. As such, truly vast samples began to biyzed N=8,927, in the published ENIGMA-Depression
study;N=10,194 in the ENIGMA-Lifespan study; séable 1).

At the time of writing, ENIGMA'’s first studies oftthizophrenia and major depression have been pelblish
results are compared kigure 4. Some caveats are needed in showing these dathysgige: the
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schizophrenia and major depression patients wdrastertained at the same sites, so site or gdugrap
effects may be present.
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Figure 4. ENIGMA’s studies of brain differences in disease revealed consistent patterns of subcortical volume differences
across multiple cohorts with schizophrenia and major depression (data reproduced, with permission, from van Erp 2015,
Schmaal 2015, Molecular Psychiatry). Here we show the effect sizes (Cohen’s d), for the mean volume difference
between patients and matched controls, for a range of brain structures measured from MRI. After meta-analysis of all
cohorts, in schizophrenia, a range of subcortical structures showed volumetric differences, including hypertrophy, which
may be due in part to antipsychotic treatment. In major depression, the hippocampus is smaller in the depressed groups.
Such data, for these and other brain measures, is now being compiled and analyzed across 12 disorders in ENIGMA (see
Table 1 for a summary), and may be useful for classification, so long as relevant confounds, site effects, and co-
morbidities are appropriately modeled and understood.

Among the structures so far assessed, the hippasashows the greatest differences in each disarder
terms of statistical effect sizes - but in majopidssion, it is the only structure showing differes, of those
assessed so far (Schmaal 2015). Many other stascstiow volume deficits or even hypertrophy in
schizophrenia; basal ganglia enlargement has basywoted in prior studies of patients takingeed:-
generation antipsychotics. In people with schizepka, abnormal ventricular enlargement has long bee
reported (as far back as Johnstone, 1976), butaheal variations in ventricular size make theefsize
smaller for this structure, even though the absolotume difference, on average, is greater thantfeer
structures assessed. In major depression, thedapgml volume difference was greater in patients wh
experienced more depressive episodes, and in thageosed before the age of 21 years, which wdeast
partly independent effects. This is in line withrmagorior reports of greater brain differences iosh with an
earlier onset of the disease. Studies of cortiedsures are now underway across all ENIGMA disease
working groups; many cortical regions are commamlglicated in psychiatric illness, so these anaysay
offer a more complete picture relating brain stueah differences to clinical measures, medicatians,
outcomes. At the same time, diffusion imaging stadire also underway; initial reports reveal coasts
deficits in fractional anisotropy - a measure oftelmatter microstructure - for major white mati@cts in
schizophrenia (Bora 2011; Holleran 2014; Ellisonighit 2014; Kelly 2015); an interesting question is
whether antipsychotic medications affect white sratAhmed 2015) and brain connectivity (O’Donoghue
2015) in a way that fits with their known effects structural anatomy.

2.1.Extensions and Refinements.
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Because of the worldwide scope of the ENIGMA stadanly the brain measures that were most readily
measured have so far been examined. Clearly, #iemmeasures that may be more relevant to eachsdise
closer to the action of disease-causing genesf thay are difficult to harmonize and measure standard
way, the available sample sizes will lag behindséhavailable for the simpler measures. Becauseazidis
of work on shape analysis of anatomy, several @BNIGMA disease groups have begun to analyze and
meta-analyze subcortical shape (Gutman 2015), mtheaprofile of volumetric effects with more sdti
precision. These efforts will also determine whestepe metrics offer additional predictive valwercand
above standard metrics, and in which situations.

The ENIGMA-Laterality group is studying global tasnin the profile of left-right differences in bnai
structure, and whether they relate to handednessaad disease status, in over 15,000 people @huyzel
2015a,b). Reduced or abnormal brain asymmetry @as teported in many brain disorders (Okada 2015),
but the scope and generality of these differer&@si yet understood. Also, many important aspafcts
human brain function show lateralization in terrhshe underlying processing networks, but the ljglof
this specialization is poorly understood, as acéofs that influence it. Whether brain asymmetryasuges
add value as diagnostic predictors, will be testa@okoss ENIGMA.

ENIGMA-EEG is studying the influence of geneticieats on brain functional activity measured withlpc
recorded electrical signals, in a combined dat@set 10,155 individuals, ranging from 5 to 74 yeafsige.
EEG metrics of brain function mature rapidly witdpeaand relate to aspects of cognition such abrtia’s
processing efficiency; they also show abnormalégie®ss many neurodevelopmental and psychiatric
disorders. Combining data from several large tvad tamily datasets, the ENIGMA-EEG working group is
performing a genome-wide association analysis ahbwscillatory power — a highly heritable trafiefore
proceeding to in-depth analyses of lateralizedsagtibrain connectivity, and network properties.

Brain-Wide Genome-Wide Association Studied/oxel-based mapping methods are complemeixary
approaches that measure the volumes of specificrregf the brain, and they allow comprehensive and
unbiased searches for effects of disease or geraimtions across the brain. “Brain-wide” genomeav
searches, or “voxelwise GWAS” (Shen 2010; Stein02@hn involve over a trillion statistical testowkver,
once we account for the covariance within the imagg genomic data, the number of independent bestg
conducted drops to less than 15,000 x 1,000,00@& tBe extremely loy-values of some genetic
associations in ENIGMAp~10? in Hibar 2015), several effects can still surna&ouble” Bonferroni
correction for multiple testing across both the gmand the genome (Medland 2014).

As a result, several recent approaches have beefoged to perform brain-wide genome-wide assamiati
studies to identify "spatial" features associatéth genetic variants, such as specific WM pathwaayd their
components, patterns of cortical thickness, or eaivation patterns, rather than "global" meassteh as
brain or subcortical structure volumes. These aggtes may be broadly divided into (bjute force”
methods, that use mass-univariate testing to wesy &SNP for associations at each voxel in the enagd

(2) data reductiormethods, that attempt to reduce the search spa@zlbcing the number of features in the
image, or the genome, or both (Vounou 2010, 2022 2). Data reduction methods may include claksic
methods, such as canonical covariates analysisgependent components analysis (Gupta 2015; Calhou
2015), or modern variants such as sparse codimgpassive sensing, or “deep learning” for feature
discovery (see Thompson (2013) for a review of ivaliate imaging genomics methods). Among the ‘brut
force” methods, Jahanshad (2015a,b) detail a pedetiethod whereby several sites run a voxel-based
morphometric analysis independently, using a GWASter covariate-based analysis at each voxel, and
later communicate their findings to a central fitemeta-analysis (sd&gure 5). This approach was able to
map out in the brain and meta-analyze the effediseotop SNP from the ENIGMA2 study, which scregne
the genome for variants associated with the sizubtortical structures (Hibar 2015). To avoid oeaputing
everything when a new site joins, this “meta-morpktry” approach allows cohorts to align their data
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their own brain templates, which are later aligteedn overall mean template for meta-analysis. $uch
distributed effort offers many advantages for imaggenomics, due to the vast number of predictm siew
cohorts join, each site’s computational hardwarelmleveraged by all the others. Such an appraiémhs
cooperative computation on data without requirithgh@ data to be shared or ever transferred. iBhas
interesting area of cooperative machine learniaty¢hn also increase “buy-in” - opening up parttign to
countries with stricter data transfer laws.

As part of ENIGMA3, a genome-wide screen of thdexqrone subproject will adopt “genetic clustering”
methods to identify coherent patterns of gene effiecthe brain (Chen 2013, 2015). Based on themaff
genetic correlation, brain regions or sets of vexan be grouped into clusters with similar genetic
determination. The standard decomposition of tlankinto regions may be adapted to include genetic
clusters, or new regions where genome-wide assatiatay be more efficient (Chiang 2012). This ajggto
has already been applied to create genetic pativd the cortex; initial work in ENIGMA will ovealy pre-
made partitions on the cortical data from each &tmetic correlations can now be computed ragidin
GWAS summary statistics (Bulik-Sullivan 2015a,b)king it feasible to compute and performing clustgri
on matrices of “genetic connectivity” whose entrées genetic correlations. The ENIGMA-GCTA Working
Group is currently studying these methods, in raitétidata.

Many disorders affect the brain’s white matter andnectivity. Using diffusion tensor imaging (DTI),
ENIGMA's disease working groups have begun to céenpvidence across cohorts for differences in gean
of DTI measures, which reflect white matter intggend microstructure (Kelly 2015). Several yedra/ork
went into harmonizing ENIGMA'’s DTI analysis protdspto study which metrics are consistently hetéab
and reproducible across multiple twin and familh\aas worldwide (Jahanshad 2013; Kochunov 2014,
Kochunov 2015). These DTI protocols have beeneadifdrward into ongoing GWAS and disease studies,
and initial genome-wide screens of the structurahectome (Jahanshad 2013; de Reus 2015). Ontledge
side, ENIGMA working groups have also formed toeassother kinds of genetic variation, includingycop
number variants (CNVs), where abnormalities havenbreported in autism, schizophrenia, and learning
disabilities. The ENIGMA CNV helpdesk is now supsing supervising an initial analysis of CNV data i
13,057 people from 24 cohorts worldwide, after dgweg harmonized protocols for CNV “calling” and
quality control. Participating cohorts include gpsiurom Japan, Mexican-Americans, and people oftévies
European, Nordic or Swedish ancestry. Initial ¢ff@re evaluating known “psychiatric’ CNVs as potalis

of MRI and DTI phenotypes computed in other ENIGjects. Challenges include the pooling of data
from genotyping chips with different coverage; sdmee sparse coverage of SNPs in regions with segine
duplications or complex CNVs.
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Alignment of 3 channels:
1) T1-weighted image
2) Binarized cortical ribbon
3) Binarized subcortical set
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g # deformation template

: meta-MDT created
ADNI 2 ADNI1  Rotterdam from 4 cohorts

For each subject j in cohort j the 3 channels are
registered to the cohort’'s MDT.
The set of resulting Jacobian maps are analyzed.

Statistical maps for each cohort are warped to
the meta-MDT.
Meta analysis is performed in the final space.

Figure 5. Meta-Analyzing Statistical Brain Maps. As in other fields of brain mapping, voxel-based statistical analyses
can map statistical associations between predictors and brain signals. To meta-analyze maps of statistical associations
across sites, Jahanshad (2015) proposed a method whereby each site aligns data to their own brain template (mean
deformation template, or MDT). Statistics from each site are meta-analyzed at each voxel, after a second round of
registration to an overall mean template (computed here from 4 cohorts representing different parts of the lifespan).
Analyses proceed in parallel, using computational resources across all sites; analyses are updated when a new site joins.
This approach applies equally to voxel-based maps of function, and the ENIGMA-Shape working group has modified it to
work with surface-based coordinates (Gutman 2015). If structural labels are used to drive the multi-channel registration
(top panels), in conjunction with an approach such as tensor-based morphometry, the resulting local volumetric measures
should closely mirror volumetric findings for specific regions of interest. As such, some results of brain-wide genome-wide
searches can be checked by consulting genome-wide association results for specific regions of interest (Hibar 2015a,b;
Adams 2015).
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In a complementary initiative, the ENIGMA-Epigemstiworking group is studying epigenetic processeh s
as methylation, which is an index of biologicalrapand lifecourse ‘stress’ that may explain an irtgod
proportion of the gene-environment contributioexpression of many common diseases such as stnake a
dementia. The group is how performing epigenomesveissociation studies (EWAS), across 14 cohorts fro
Asia, Australia, North America, and Western Eurdpdgst associations between DNA methylation and
brain measures, initially focusing on total bragdlume, subcortical volumes and cortical thickness a
surface areas. The working group is analyzing mation data from 9,000 people, of whom 5,000 hast b
methylation data and MRI. In addition, the ENIGMAiBenetics group is prioritizing the analysis of BN
methylation sites based on their effects on gepeession or association with stress- and anxidgted
phenotypes. There is some evidence of early lifanghs in stress response genes through methylation
(Backhouse 2015), just as early life events infbeelater life disease expression - notably strokete

matter hyperintensities, and cognitive impairméftgreat interest are epigenetic changes througheutfe
span, and with aging, which may predict mortalignfi all causes, as well as physical and cognitive
performance. Associations are being tested firsbfain phenotypes that are known to change thé mos
across the lifespan, based on incoming informdtiam ENIGMA'’s Lifespan study in over 10,000
individuals (Dima 2015).

3. Relevance to Individual Evaluation, and Longitudhal Assessment

ENIGMA was not designed to make predictions abodividuals based on their scans and genomic data. A
in most epidemiological studies, the power lieaggregating so much individual data that subtlect$fon

the brain can be detected, including findings &@ath cohort’s data were insufficient to detecbtimer

words, its primary goal has been to relate braiasuges to disease and treatment effects, anditmtain

the genome. With the aggregated data, it has bessiljbe to determine how reproducible these pattaera
worldwide. Also, for the study of treatment effedENIGMA does not have the ideal design. Ideallye o
would prefer to have pre-post treatment longitulditesigns instead of the cross-sectional compagigon
ENIGMA, where medication status is often confountdgdge, disease duration, comorbidity and disease
severity.

Even if a large data sample is needed to discofactar that influences the brain, it does not miba it is
irrelevant to individualsAPOEis one such example, discovered in 1993 by linkagsdysis in pedigrees.
More recently, a rare variant in tiREM2gene (Jonsson 2013; Rajagopalan 2013) was fousidietct
Alzheimer’s disease risk and accelerate brain¢isssis as we age — perhaps doubling loss ratdd age
and increasing AD risk by a factor of 2-4. This geariant is undoubtedly important for those whocd: it
is found in a little under 1% of controls and #dibver 1% of AD patients.

3.1 How Does it Help to Predict Risk for Decline?

In current clinical practice, it is not recommendedhotify a research participant of th&iPOEstatus, and
most ethics boards clearly define the circumstaicesich incidental findings or health-relevant
information is communicated back to a researchgypaint. In the case &APOE participants are not
typically informed of their genetic status, as thare no effective treatments for late-onset Alxiegis
disease. Still, discovering predictors of more dagecline is useful for the pharmaceutical indusary
understanding the behavior of participants in chhtrials, and can greatly improve drug trial desi
reducing costsEnrichmentapproaches use some characteristic of a patieaidot them for a clinical trial -
this may be prior response to a certain drug, alsit may be a prediction that they are more likelglecline
(FDA, 2013). In the AD field, some clinical triat®w select patients based on having a PiB-posREE
scan (lkonomovic 2008) - as evidence of incipiebt gathology - and thAPOE4risk genotype, as carriers
are more likely to develop AD. This selective enrteht allows faster, less costly, and more well pede
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clinical trials, with demonstrable reductions i tlumber of patients needed to show treatmentteffeltia
2015).

ENIGMA's disease working groups are likely to breadhe set of known factors that help predict recpv
or decline. In ENIGMA-HIV, for example, a key gaalto understand predictors of resilience - factbat
might forecast healthy brain development afteruse of antiretroviral treatment (Fouche 2015). @il it
is important to know if a predictor of decline j@esific to one cohort or likely to generalize therts, or if it
is applicable in a limited set of situations. Uredanding howAPOE4and other major risk genes shift the
lifetime trajectory of brain measures will alsoeletermine how much they will help when used foical
trial stratification. This is a goal of the ENIGMKifespan group (Dima 2015a,b). Clearly, any preagi€iof
suicidal behavior would be very important in thenagement and follow-up of patients with psychiatric
disorders (Mathews 2013), and a secondary projesuwidality was started within the ENIGMA-
Depression working group (Renteria 2015). Simylaidctors that predict whether ADHD in a child wil
persist into adulthood, will have clinical utiliffioogman 2015). Ultimately, the stratification dustering of
ENIGMA cohort data into subtypes, based on imagitigical or behavioral data, may point to distioos
that help us understand the heterogeneity of thisseders. This heterogeneity, without models to
disentangle it, makes individual patient predictitvarder to make.

3.2 Normative Data Across the Human Lifespan

One effort where ENIGMA may contribute to individymediction and evaluation — albeit with some ease
— is the ENIGMA-Lifespan project (Dima 2015a,b) this work, ENIGMA cohorts are invited to contrilkut
volumetric measures from normal individuals in tregimples, which span the age range from 2 to agsya
age. Although some cohort studies focus on childrethe elderly, many scan people across the Hiiesp
allowing the computation of age-trajectories foregal key brain measures; the results show a reabérk
difference in the maturational trajectory of diffat structures, supporting many earlier neurodeveémtal
reports on the sequence of brain development (@&fia4; Sowell 2004). To cope with the non-uniform
sampling density of the cohorts, these overalett@ries must be interpreted cautiously; clearlyesparts of
the lifespan are better sampled than others, anmbdeled effects of scan site, demographics, and eve
cultural or environmental differences may drive samfthe effects. Clearly, disentangling the drivfactors
is statistically complex, but the potential is #heio derive normative measures and models of atlr p
through life, in cohort studies as diverse as ENKNhe life span analyses (and normative curvespéso
highly relevant for neurodevelopmental disordeishsas OCD, ADHD, autism, etc. - for early detection
secondary prevention in at-risk populations. Evaltiyuthere may even be efforts to train individuid
specific domains, to stimulate the maturation @csfic brain areas that appear to be deviant omaénm
curves.

Such normative data have possible applicationsbvidual assessment, if used judiciously. In jpéugs,
growth charts for height and weight offer metri€svbere a child stands relative to others of theesage, as
aZ-score for example. Similar metrics for brain stame, among others, may help in studies of
neurodevelopment where interventions and treatmagstsised to promote healthy maturation, or regoaer
in the case of brain trauma, for example. Simildoltter trajectories to chart loss of brain volumit
advancing age help in routine diagnosis of theviddal with possible cognitive problems, by indioatfirst

if their brain is within normal limits for age, asécondly the precise centile on which it lies (Eh2009;
Dickie 2013, 2015)- much more data is needed to populate these griaph@nuch like child growth charts)
they have the potential to be highly valuable iatiree clinical practice as well as research. Oagstan data
are being collected to expand these templates (exyv.brainsimagebank.ac.uk).

Norming of brain measures also has commercial egjdins (Ochs 2015). ENIGMA relies heavily on
developments in software for imaging and genotygogiisition, quality control, and analysis, that mak
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standardized assessment possible. In some reditims world, such as Thailand and Cambodia, ENIGMA
has contributors who are interested in whetherakes sense to use brain development norms frome¥est
cohorts, or build their own (Jahanshad 2015; Fo@€l&). By comparing developmental trajectoriepssr
very diverse multi-cohort data, better answersi&ése¢ and other practical questions are within reach

4. Machine Learning, Big Data, and Individual Preliction.

With the advent of very large neuroimaging datgse¢scan fit predictive models to the data and test
them for their robustness. Our models of how diseasid genes affect the brain are constantly being
tested and improved, especially in situations wistaistical effects have previously been too shaall
discover, or have been confounded by factors thianat be adjusted for. In GWAS for example, there
are known genetic differences in allele frequenam®ss populations, and if these are not accyratel
modeled based on much larger datasets, and adjostesing multidimensional scaling, they will
confound the analysis and lead to spurious resutidny more SNPs will show “effects” on the brain,
ultimately turning out to be false positives. Yeafsfalse alarms” (Farrell 2015) led the genomics
community to adopt strict standards for reportiffges like a standard genome-wide significance
threshold (described above). In addition, indepandeplication of effects is required. In imagiag,
somewhat more flexible approach has been used apjthoaches from FDR to random field theory and
permutation all co-existing in the literature; thge of candidate brain regions or prior hypothéses
functional imaging studies is encouraged, but geaf candidate regions in genomics is sometimtég ho
debated as leading to many false positive effébtdlios 2012; Farrell 2015; ENIGMA-DTI Working
Group, 2014). Munafo and Kempton (2014) arguedttiagrowing flexibility in analyses used in
neuroimaging is increasing the reporting of falesifive results, and meta-analyses may offer better
estimates of the validity of claims regarding brdiffierences in major depression and bipolar iknes
fields for which they meta-analyzed the neuroimgditerature.

Given the sample sizes attained, ENIGMA offersaanfework not only for unrestricted searches, but als
to test more focused hypotheses and provide irltezphcation using, for example, cross-validation
methods. So far, the Working Groups have over 83dsdary proposals”: many study clinical measures,
disease subtypes, and patterns of behavior susthicidality or negative symptoms, or other diffares
that might contribute to the heterogeneity of bidisease and outcomes. One such project, in the
ENIGMA-Major Depression group, assesses the efigothildhood trauma on depression-related brain
measures, a factor that may be modeled effectlwelyomparisons with data from the ENIGMA-PTSD
group, where childhood trauma is also a major ptadi factor. Partnerships between ENIGMA groups
may resolve some sources of brain differencesatteatlifficult to disentangle. In HIV+ people whouse
stimulant drugs, for example, white matter inflanimais commonly reported, while patterns of
accelerated atrophy are often seen in HIV+ people @o not use intravenous drugs, especially ineghos
carrying theAPOE4genotype. These and other predictors can be askigspartnerships between the
ENIGMA-Addictions and ENIGMA-HIV groups, by deterning a common core of predictor variables
that can be harmonized.

More refined models are also needed: we now knetvttie profile and extent of brain differences in
disease may depend critically on a patient’s agegtibn of illness and course of treatment, as all
adherence to the treatment, polypharmacy and atiraeasured factors. It should also be noted that
differences in ancestral background, as deterntyasdd on genotype, are strongly related to systemat
differences in brain shape (Bakken 2011; Fan 204%y.realistic understanding of the brain imaging
measures must take all these into account, asaweltknowledge the existence of causal factorsapsrh
not yet known or even imagined. The quest to identdividual predictors is therefore more likely t
succeed in finding factors that affect aggregatie and outcome in groups of individuals, rathentha
offer firm predictions regarding an individual.
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A more immediately achievable goal, for ENIGMA{asrank brain measures in terms of how well they
do predict individual decline, or diagnosis. Préalis of imminent brain decline are already usebidost
the power for clinical trials in Alzheimer’s diseady over-enrolling, or separately analyzing pate
whose brain measures, or clinical and genomic nmeassuggest that they will decline faster. In
ENIGMA, the ENIGMA-Plasticity group is evaluatingeg genetic influences on measures of brain
change, in a meta-analytic setting (Brouwer 20ESgproducible drivers of brain decline could loeifd
by screening brain data worldwide, they would helplanning enrichment approaches for drug trials.
Several major initiatives have this goal (e.g., APMck 2015). Currently, the only genetic markesa
for enrichment iIAPOE but this may change as more information accuresléee Lupton 2015, for an
analysis). The complex pattern of association betw@ain measures and SNPs acros®\B@Egene
(Hibar 2015) suggests that future polygenic predecbased on machine learning may better predict
clinical decline, and decline in brain measureantthne standardPOEgenetic test, which is based on
just 2 SNPs.

4.1 Machine Learning. Innovations in machine learning make it possiblbuild robust predictive
models from millions of predictors, often using @insion reduction techniques to home in on more
efficient sets of variables that explain the magiance in the data; this vast field, includingrspa
learning and compressive sensing, is especiallyadé in imaging genomics, with millions of predict

in both the images and the genome. Several matdaneing developments have been applied to connect
genomic and imaging measures, using methods syzdrakel ICA (Gupta 2015; Calhoun 2015), elastic
net (Wan 2011), sparse reduced rank regressionRsRBunou 2010), among others. ENIGMA is
beginning to test some of these models, spec¥italthe disease working groups, for case-control
differentiation and differential diagnosis. Pagbdt to combine imaging and genomic data for ooneo
prediction suggest that imaging measures may bdrmace predictive of future clinical decline than
genomic measures, but both are complementary €220415). Predictive models should improve as they
draw on more data, and the larger ENIGMA GWAS stadire now discovering more genetic markers
that can be used in predictive models for brainguess (Hibar 2015; Adams 2015). However,
compelling as these approaches are and not wistiidgmpen the enthusiasm for these very promising
techniques, the image measurements being predjetegtally require a human check and correction if
necessary, particularly in datasets with complexgimg features such as occur in older patients with
stroke — machine learning analysis algorithms sdifinot reliably separate the hyperintensity due to
small cortical infarct from that due to a white teathyperintensity or artifact, reliably. Also, thariants
driving the heritability of disease risk are onlgf beginning to be discovered for many of the miajain
diseases studied within and outside of ENIGMA. Uresuised learning is also relevant for understamdin
the heterogeneity of diseases, which has madedeh#o discover their causes and mechanisms.
Brodersen (2013) argued that one could use unsigpdriearning on imaging, clinical and genetic data
see whether subtypes (or clusters) can be idedhtifithin a disease, and whether these data cluster
together in agreement (or disagreement) with ctidegnostic classifications.

In conclusion, we have reviewed current work by ENIGMA Consortium. ENIGMA began in 2009,
and is now a distributed effort, with over 30 wadkigroups (see Table 1), coordinated from many
centers worldwide. As we noted, ENIGMA’s main gdadwe been to detect effects of disease and
genetic variants on the brain, to see how condithese effects are worldwide, and to study what
modulates these effects. On the genetic side,ytsnan be possible for polygenic scoring to produce
predictors that are routinely used in brain imagtglies, explaining some of the observed variahiis.
may make other effects easier to detect. On tleadesside, we are beginning to identify and confirm
distinctive patterns of brain differences in eath cange of brain diseases, along with a better
understanding of which patterns are specific tegigisorders, which patterns tend to generaliz#, an
what factors account for the heterogeneity acrobsits. This will help us understand the situations
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where predictive models can be used, for diagnhotdgsification, outcome prediction, and norming of
individual data against appropriate reference peipns.

We end with a note in praise of small studies. lakg consortium, ENIGMA would be impossible
without the cohort studies and all the individualso contribute; most of the data analyzed in ENIGMA
came from cohorts with relatively modest samplesimevitably, many hypotheses are not addressable
on a large scale, and some questions - especiallat questions - involve targeted interventions or
phenotypic assessments with a depth or sophisticatit likely to be attained at every site. As fike

said, “Nobody has the ability to work everything,daut everyone has something useful to say; warkin
together, the whole vast world of science is wittim reach.” {Jk évTwyv 6] cuvadpoIlouévwv
yiyveoBai 11 péyeBog; Aristotle, Metaphysics, ¢. 350 BCE). This is the ENIGMA motto:
http://enigma.ini.usc.edu/about-2/
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Table 1. ENIGMA working groups, showing the number of independent participating samples,
and the total sample size analyzed to date. A range of recruitment methods are represented.
Some ENIGMA working groups, such as ENIGMA-Lifespan, ask questions that can be answered
in healthy cohorts — often participants are controls from psychiatric studies, or population based
samples, in which people with a current psychiatric diagnosis may be excluded altogether.
Members of ENIGMA disease working groups have contributed their controls to several ongoing
studies, leading to normative samples of unprecedented size (over 10,000 in the Lifespan and
15,000 in the Lateralization groups). Some working groups study clinic-based samples of cases
and controls, and others study samples enriched for certain risk factors: over half of the people
enrolled in ADNI, for example, have mild cognitive impairment, which puts them at heightened
risk for developing Alzheimer’s disease. In ENIGMA-Lateralization, one participating cohort
(BIL&GIN) enrols left-handers at a higher frequency found in the general population, to boost
power to understand handedness effects. Study designs, enrolment and sampling approaches
vary widely across cohorts taking part in ENIGMA, so several ENIGMA studies assess how
much difference it makes to restrict or broaden analyses in certain ways, such as pooling or
separating certain categories of patients. Genetic analyses, for example, are typically run twice,
first including patients and then excluding them. Disease group analyses may assess brain
differences in different patient subgroups — chronically ill versus first-episode patients, at-risk
siblings versus the general population, or people with different symptom profiles, or with distinct
etiologies (e.g., negative symptoms, whose origin may differ in schizophrenia, addiction, or
PTSD). Abbreviations: SWEDD=scans without evidence of dopaminergic deficit.
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Table 1. ENIGMA working groups, showing the number of independent participating
samples, their age range, and the total sample size analyzed to date.

ENIGMA Number of Total N (patient N) Age range (in | Relevant
working cohorts years) publication(s)
groups
ENIGMA2 50 30,717 (3,277 patients) 8-97 Hibar +287
GWAS authors, Nature,
(Subcortical) Jan. 2015
ENIGMA3 50+ 32,000+ (4,000 patients) 8-97 In progress
GWAS
ENIGMA DTI 35 13,500 (3,000 patients) neonates-90 Kochunov et al.,
GWAS 2014, 2015
NIMG; Jahanshad
et al., 2013 NIMG
ENIGMA EEG | 4 10,155 (1,000 patients) 5-74 In preparation
ENIGMA-CNV | 24 13,057 (1,800 patients) 13-90 In preparation
ENIGMA- 14 9,000 Across the In preparation
Epigenetics lifespan
ENIGMA- 26 7,308 (2,928 patients) average van Erp et al
Schizophrenia dataset age 2015, Mol Psych.
ranges from
2110 44
ENIGMA-MDD | 18 10,245 (2,188 patients) 12-100 Schmaal et al.,
(Major 2015, Mol Psych.
depression)
ENIGMA-BPD | 20 4,304 (1,710 patients) 16-81 Hibar et al.,
(Bipolar submitted to Mol
disorder) Psych.
ENIGMA- 23 3,242 (1,713 patients) 4-63 Hoogman et al.,
ADHD OHBM 2015,
under review Am
J Psychiatry
ENIGMA-OCD | 35 4,237 (1,820 patients) 6-65 In preparation
ENIGMA- 23 6,569 (3,800 patients) 18-55 In preparation
Epilepsy
ENIGMA- 15 4,555 (1,050 patients) 8-67 In preparation
PTSD
ENIGMA- 4 950 (626 30-85 In preparation
Parkinson’s Patients/SWEDD)
ENIGMA-22q | 22 1,020 (554 patients) 6-50 in preparation;
Sun et al SFN
2015 (abstract);
Schneider et al
AJP 2014;
Vorstman et al
JAMA Psych
2015
ENIGMA-ASD | 20 1,960 (1,074 patients) 3-46 In preparation
(Autism
Spectrum
Disorders)
ENIGMA-HIV | 10 650 (all patients) 6-85 Fouche et al.,
OHBM 2015; Nir
et al., CNS 2015
ENIGMA- 21 12,458 (3,820 patients) 7-68 Mackey et al.,
Addictions PBR 2015
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ENIGMA- 5 4,000+ 14-97 In preparation
GCTA
Secondary Number of Total N Age range (in | Relevant
Projects cohorts years) publication(s)
ENIGMA- 91 10,672 (healthy only) 2-92 Dima et al.,
Lifespan 2015a, 2015b
submitted
Psychiatric 87 21,199 for 4 of the 4-100 -
Cross- disorders (7,294 patients)
disorders Schizophrenia: 4,568
(2,028 patients)
Bipolar Disorder: 4,358
(1,745 patients)
Major Depression: 9,031
(1,808 patients)
ADHD: 3,242 (1,713
patients)
ENIGMA- 48 15,531 (0 patients) 8-90 Guadalupe et al.,
Lateralization OHBM 2015a;
2015b submitted
ENIGMA- 10 2,513 (2,153 healthy 9-73 Brouwer et al.,
Plasticity controls; 290 OHBM 2015
schizophrenia patients; 70
bipolar disorder patients)
ENIGMA- 7 6,000 21-90 Jahanshad et al.,
VGWAS meta- OHBM 2015,
ENIGMA- 16 4,180 (1,927 patients) 18-60 Kelly et al.,
Schizophrenia- OHBM 2015
DTI
ENIGMA- 8 4,079 (1,769 controls, 906 | 8-58 In preparation
Schizophrenia- schizophrenia patients,
Relatives 1,404 relatives)
ENIGMA- 2 462 (159 patients) 16-75 Gutman et al.,
Schizophrenia- OHBM 2015,
shape Gutman et al.,
ISBI 2015
ENIGMA-ILAE | 12 34,992 (8,835 patients) 18-70 Whelan 2015
polygenic risk
collaboration
ENIGMA-MDD | 15 2,100 (800 patients) 12-100 In preparation
(Major
depression)
DTI
ENIGMA-PGC | PGC PGC-Schizophrenia 8-97 Franke 2015;
Schizophrenia | Schizophrenia | GWAS was based on Stein 2015
Collaboration and 36,989 patients and
ENIGMA2 113,075 controls
summary
statistics
ENIGMA- 3 127 (healthy only) 21-85 de Reus 2015
Connectome -
Methods

harmonization
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