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ABSTRACT  
 
Neuroimaging consortia such as ENIGMA can significantly improve power to discover factors that affect the human 
brain by pooling statistical inferences across cohorts to draw generalized conclusions from populations around the 
world. Voxelwise analyses such as tensor-based morphometry also allow an unbiased search for effects throughout 
the brain.  Even so, such consortium-based analyses are limited by a lack of high-powered methods to harmonize 
voxelwise information across study populations and scanners. While the simplest approach may be to map all 
images to a single standard space, the benefits of cohort-specific templates have long been established.  Here we 
studied methods to pool voxel-wise data across sites using templates customized for each cohort but providing a 
meaningful common space across all studies for voxelwise comparisons. As non-linear 3D MRI registrations 
represent mappings between images at millimeter resolution, we need to consider the reliability of these mappings. 
To evaluate these mappings, we calculated test-retest statistics on the volumetric maps of expansion and contraction. 
Further, we created study-specific brain templates for ten T1-weighted MRI datasets, and a common space from four 
study-specific templates. We evaluated the efficacy of using a two-step registration framework versus a single 
standard space. We found that the two-step framework more reliably mapped subjects to a common space.  
 
Keywords: Multi-site, voxelwise, tensor-based morphometry, test-retest reliability  
 
1. INTRODUCTION 
Neuroimaging consortia such as ENIGMA (enigma.ini.usc.edu) [1] can boost power to discover subtle biological or 
clinical correlates of brain measures by pooling information across cohorts worldwide. Because of the scale of the 
datasets (tens of thousands of MRIs) [2], current efforts have successfully identified effects of single nucleotide 
polymorphisms (SNPs) that explain less than 0.5% of the variance in brain measures [3]. These studies use 
automatic segmentation tools to produce volume, thickness, and surface area measurements for regions of 
anatomical interest [4]. Measuring the brain in a priori regions can help in interpreting results while maintaining 
statistical power.  However, this approach could limit searches of neuroimaging phenotypes to a handful of pre-
defined features such as hippocampal or other subcortical volumes, and patterns of effects throughout the brain may 
be overlooked.  
 
Voxelwise analyses such as tensor-based morphometry (TBM) allow for an unbiased search over the entire brain, 
and contrary to the handful of features often selected in region of interest (ROI) analyses, the number of features 
examined in TBM is on the order of millions.  TBM is a sensitive approach to monitor longitudinal changes related 
to development and aging in health and disease [5], and cross sectional TBM studies can reveal the extent to which a 
certain trait or condition has an effect on brain volume and whether the effect is local or diffuse. Genetic studies are 
also common with TBM. Voxelwise genome-wide association studies have been proposed previously [6, 7], but 
were implemented for one or two specific dataset with limited statistical power for discovery. As with ROI analyses, 
for subtle genetic effects there is therefore a need to pool voxelwise TBM data from multiple sites to achieve power 
and adequate sample sizes. However, it is not immediately clear how to relate these features and spatially normalize 
data across multiple sites, imaging acquisitions and datasets [8-10]. Inaccurate alignment across sites may further 
limit the power to detect localized effects.  
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Here, we are developing a multistage framework to conduct voxel-wise meta-analysis of morphometry and other 
brain maps, to be distributed across sites in the ENIGMA consortium [11, 12].  In this framework, independent sites 
perform cross-sectional TBM with a site-specific MDT, yielding “Jacobian determinant” maps that localize 
volumetric variability within their cohort.  Statistical hypotheses are tested image-wide across all voxels at each 
respective site.  
 
Each site-specific template is then non-linearly registered to our ENIGMA-Mega template—a template made from 
multiple site-specific templates to normalize all site statistics into a single space [11]. The statistical maps from each 
site are aligned to this mega template common space by a second round of registrations, and are then in a common 
space in which meta-analysis of the statistical maps can occur (see Figure 1). 
 
As each template may be derived from images taken with different acquisition parameters, field strengths, head 
coils, and image resolutions, ideally the parameters underlying the warps should be chosen to yield reliable 
registration, across multiple sites and cohorts. To better normalize T1-weighted (T1w) images across different sites, 
we proposed in earlier work [11, 12] to add additional target channels (gray matter ribbon mask and subcortical 
structure mask) to help further drive the nonlinear registration between each image and template. In line with our 
prior efforts in ENIGMA [2, 13, 14], we expect that sites would already have these parcellations quality controlled, 
and we have determined through these studies that these segmentations and parcellations are adequate in finding 
group-level meta-analyzed significance. Thus, our motivation for including additional channels is to enhance 
registration alignment with a priori high-quality anatomic information.  
 
In this work, we perform one of the most comprehensive test-retest reliability estimates across 9 imaging studies, 
each with a unique population of individuals, different age ranges, and most importantly, different imaging 
acquisition parameters, to narrow down an optimal multisite registration scheme for harmonized multi-site 
voxelwise meta-analysis.  
 

 
Figure 1. Diagram of our multi-site tensor-based morphometry framework. (a) Individual T1w images are non-linearly registered 
to a site-specific template. (b) Each subject to MDT registration yields a Jacobian map that quantifies volumetric expansion and 
contraction at each voxel from the subject to the MDT. (c) Each site participating in the framework runs voxelwise statistics on 
the Jacobian maps to render statistical maps in the space of the MDT. (d) Each site-specific MDT is non-linearly registered to a 
ENIGMA-Mega MDT. (e) Statistical maps in the space of each site-specific MDT are transformed by the non-linear mapping 
between site-specific MDT and ENIGMA-Mega MDT and are interpolated linearly. (f) Meta-analysis of statistics can occur in 
the ENIGMA-Mega MDT space.  
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2. METHODS 
 
2.1. Cohorts and image acquisitions 
 
MRI datasets from eleven cohorts were analyzed.  Cohorts included: the first and second phases of the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI_1, ADNI_2) [15], the Queensland Twin Imaging Study (QTIM), Brain 
Genomics Superstruct Project (BrainGSP) [16], and multiple datasets from the Consortium for Reliability and 
Reproducibility (CoRR) [17] including:  Beijing Normal University 1 and 2 (BNU_1, BNU_2), Mind Research 
Network (MRN), University of McGill (UM_1), New York University (NYU_2) and University of Pittsburgh 
School of Medicine (UPSM).  
 
These cohorts cover a range of ages (18-30 years, to late adulthood, 60-85) and were collected on scanners around 
the world. These datasets provide us with a range of scan qualities (information in Table 1); image voxels range in 
size (0.9x0.9x0.9-1.25x1.25x2.0 mm) as do magnetic field strengths of the scanners used (1.5-4T). These datasets 
were also selected as they contained test-retest scanning sessions.   

Table 1. Demographic information for datasets used. Note: if applicable, only healthy controls and non-related individuals in the 
dataset were analyzed.  *Measures for subjects in test-retest subsample, if applicable. 

Dataset Image 
pairs for 
test-retest  

Images 
for label 
overlap 

Images pairs 
for metric 
comparison 

Magnet 
strength 

Voxel 
dimension 

Age (mean; 
std dev; 
range)* 

% 
Female* 

Time 
between 
test-retest 

ADNI_1 N/A 172  N/A 1.5/3.0 
(multiple) 

1.2x1.0x1.0mm3 75.88; 5.21; 
59.9-89.6 

50% N/A 

ADNI_2 40 196 160 3T  
(multiple) 

1.2x1.0x1.0mm3 65.92; 2.68; 
56.3-69.3 

43%  3 months 

BNU_1 40 57 N/A 3T 
(Siemens 
TrioTim) 

1.33x1x1mm3 23.1; 2.46; 
19-30 

53% mean: 
40.9 

BNU_2 40 N/A N/A 3T 
(Siemens 
TrioTim) 

1.33x1x1mm3 21.4; 0.8; 
19.5-23.3 

45% mean: 
157.6 days 

BrainGSP 40 N/A N/A 3T 
(Siemens 
TrioTim) 

1.2x1.2x1.2mm3 21.45; 2.7; 
19-29 

50% mean: 
77.3 days 

MRN 40 48 N/A 3T 
(Siemens 
TrioTim) 

1x1x1mm3 25.00; 11.9; 
10-53 

43% mean: 109 
days 

NYU_2 40 185 N/A 3T 
(Siemens 
Allegra) 

1.33x1x1mm3 22.10; 
12.80; 7.5-
53.0 

45% Same day 

QTIM 40 40 40 4T 
(Bruker) 

0.9x0.9x0.9mm3 22.83; 2.48; 
20.4-28.6 

33% 3 months 
 

UM_1 40 80 N/A 3T 
(Siemens 
TrioTim) 

1x1x1mm3 65.85; 6.86; 
58-84 

63% mean: 
111.4 days 

UPSM_1 40 99 N/A 3T 
(Siemens 
TrioTim) 

1x1x1mm3 15.1; 2.87; 
10.1-18.9 

50% mean: 
624.4 days 

Total: 360 877    31.4; 19.72; 
7.55-84 

47%  

 
2.2. Data preprocessing steps  
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All images were processed with previously tested protocols available online at 
http://enigma.ini.usc.edu/ongoing/protocols/. All T1-weighted (T1w) brain images were processed with FreeSurfer 
(version 5.3; freesurfer.net/fswiki) [4] to obtain subcortical and cortical parcellations. ENIGMA quality control 
protocols were implemented to flag outliers via visual inspection. The ENIGMA visual quality control protocol 
produced four coronal and four horizontal slices of FreeSurfer labels overlaid on a brain-extracted image 
(brain.mgz; Figure 2). The brain was extracted from the bias-field inhomogeneity corrected output (nu.mgz) of 
FreeSurfer using a cortical parcellation derived mask. 
 

 
Figure 2. Shown is an example of the ENIGMA visual quality control for FreeSurfer parcellations from the NYU_2 cohort. Note 
that four slices in each dimension give a general idea of segmentation quality, but does not cover all parcellation labels of the 
aparc+aseg.mgz.  

 
2.3 Template creation  
 
For our multi-site tensor-based morphometry framework, we use the ANTs Symmetric Normalization (SyN) 
algorithm [18] for nonlinear registration, as it has been shown to be robust [19]. It is built on the widely used Insight 
ToolKit (ITK) [20], and is open source and freely available. Each of the cohort MDTs was constructed using the 
Advanced Normalization Tools (ANTs; stnava.github.io/ANTs/) software package and accompanying scripts (at 
commit: 88276f8). Approximately 24-30 scans per cohort were used to create each template. We used the three-
channel (T1-weighed contrast, cortical ribbon, subcortical parcellations) registration approach described before [11]. 
The T1-weighted channel was the primary driving force of the registrations, with the highest weight. A meta-
population template was created in our previous work from multiple datasets.  Parameters used to create this 
template were identical to those used for site-specific templates.  Not all sites were included in the meta-population 
template as in the case of the consortia, new groups are continually joining, and occasionally leaving, and it would 
be impractical to continually create new overall templates corresponding to groups currently in the consortium. All 
templates were created in the same coordinate system of the MNI 152 1mm template.  
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Figure 3. Example (from the ADNI_2 cohort) of the three channels of a multi-channel MDT.  

 
2.4 Multi-site voxelwise Test-Retest Reliability  
 
As the main contribution of this work, we seek quantitative measures of reliability and stability to aid in parameter 
selection across sites. We used antsRegistration.sh (github.com/stnava/ANTs/tree/master/Scripts) and observed the 
effects of modifying key aspects and parameters of the registration: the image similarity metric that drives the non-
linear transformation, and the number of channels to use for the registration to the target. 
 

• Image similarity metric: The image similarity metrics computed in the ANTs package are robust and fast 
[21], but template alignment can be based on a number of similarity metrics implemented in the ITK 
library.  These options include: mutual information, based on the joint histogram entropy; cross 
correlation, based on the statistical similarity of image intensities; mean squared difference (MS), based on 
voxel intensity similarity; Demons metric (as implemented in ITK via ANTs), based on voxel intensity 
similarity. Additionally, these metrics can be combined and given weighting parameters. 

• Number and type of channels: In our developing line of work, we have shown that using multiple 
channels for registration – adding the cortical ribbon and subcortical structure channels to the T1-weighted 
image – could improve correspondence of the TBM maps across cohorts; even so, it is unclear if multi-
channel registration is also needed to warp cohort templates to an overall template, or whether this added 
computation does not significantly boost accuracy.  

 
In the present analysis, we seek to evaluate two aspects of our multi-site morphometry framework: 1) the reliability 
of the “Jacobian-determinant” (Jacobian) maps for test-retest subjects in single channel versus multi channel 
registrations; 2) the label overlap in single channel versus multi channel registrations; 3) the reliability of Jacobian 
maps in registrations using different image similarity metrics.  
 
2.4.1 Jacobian reliability evaluation  
 
T1w images from each subject were run through an image-processing pipeline to produce Jacobian maps in the 
ENIGMA-Mega MDT space. Skull-stripped T1w images and corresponding FreeSurfer cortical parcellations were 
linearly aligned to a site-specific template using FSL’s (fsl.fmrib.ox.ac.uk/fsl/) [22] flirt with 9 degrees of freedom.  
Then, T1w brains were nonlinearly registered to the site-specific template using ANT’s antsRegistration using the 
Symmetric Normalization (SyN) transformation model [18] according to the parameters in Table 2. From this first 
registration we produced natural logged Jacobian maps characterizing the volumetric expansion and contraction at 
each voxel with ANT’s CreateJacobianDeterminantImage. Each site-specific template was non-linearly registered 
to the ENIGMA-Mega MDT according to the parameters in Table 2. Each Jacobian map from the first registration 
was transformed into the ENIGMA-Mega MDT space according to the appropriate MDT to ENIGMA-Mega MDT 
transformation. Jacobian maps were interpolated linearly and smoothed with a Gaussian sigma of 2.  
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Table 2. Parameters used in the non-linear ANTs registrations. 

antsRegistration 
parameter 

Selected value Annotation  

-c, --convergence [100x70x50x15,1e-6,5] Four level registration with 100 iterations at the top (most 
smoothed) and 15 iterations at the last level (full-resolution); 
iterations at current level if the slope of the last 5 gradient 
descent values dips below convergence value of 1.0x10-6 

-f, --shrink-factors 8x4x2x1 Image representation subsampled via ITK’s 
ShrinkImageFilter by N value at each level 

-g, --restrict-
deformation 

1x1x1 Non-linear deformation is not restricted in any dimension 

-m, --metric CC, demons, demons Multi-channel: Cross correlation image similarity metric used 
for T1w channel, demons image similarity metric used for 
overlap of cortical grey matter and subcortical structure 
masks (masks are smoothed prior to antsRegistration call); 
weights for each channel were set at: 1.0, 0.5, 0.2 
Single-channel: Cross correlation image similarity metric 
used for T1w channel 

-s, --smoothing-
sigmas 

3x2x1x0vox Image representation smoothed by a sigma of N voxels at 
each level; at last (full-resolution) level there is no smoothing 

-t, --transform SyN[0.1,3,0] Symmetric normalization with a gradient step size of 0.1 
-u, --use-
histogram-
matching 

1 Histogram match images before registration 

 
Four different registration schemes were compared. The first three registrations follow our two-step registration 
scheme, with individual level templates and registration, followed by group level mapping, and we compare this to 
the more simplistic approach of mapping all subjects from all cohorts directly to a known template. The four 
schemes are:  
 

1. single-single: both registration steps used only the T1w image to drive the registration;  
2. single-multi: T1w image registration to site-specific MDT, and then a multi-channel registration from site 

MDT to ENIGMA-Mega MDT  
3. multi-multi: the three channel registration was used for both steps.  
4. MNI152: a single registration to the MNI152 template brain (skipping the site-site specific MDT step)  

 
Test-retest Jacobian maps in ENIGMA-Mega MDT space were compared voxelwise between time point one and 
time point two Jacobian maps.  Intraclass correlation (ICC; one-way ANOVA fixed effects model) was computed at 
each voxel using R’s psych package (personality-project.org/r/psych/) for each cohort (40 subjects).  
 
Further, signal-to-noise ratio was computed at a voxelwise level. Standard deviation of the ICC fit was calculated for 
each cohort rendering an ICC standard deviation map. Each cohort’s ICC map was divided by its standard deviation 
map, to render an SNR map. SNR maps were averaged across cohorts to render an average SNR map for each of the 
four registration schemes.  
 
2.4.2 Label overlap computation 
 
To evaluate registration label overlap, we measured label overlap of individual parcellations with ENIGMA-Mega 
MDT parcellations. Individual FreeSurfer parcellations (aparc+aseg.mgz) were transformed into the ENIGMA-
Mega -MDT space according to the four registration schemes described previously: 1) multi-multi; 2) single-multi; 
3) single-single; 4) MNI152. Parcellation maps on the ENIGMA-Mega MDT and MNI152 template were created 
using joint label fusion [23]. Joint label fusion involves using multiple representative atlases to label a target image. 
We employed an ANTs script (antsJointLabelFusion.sh) to nonlinearly register 136 brain images to the ENIGMA-
Mega MDT and MNI152 template. The 136 subjects represent the individuals from the four datasets used to create 
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the site-specific MDTs that constructed the ENIGMA-Mega MDT [11]. Parcellations were mapped to the target 
space and a single parcellation map in the target space was derived using a label fusion approach that automatically 
determines optimal weights [24]. 
 
Label overlap between transformed individual labels and the template labels were quantified by the Dice overlap 
coefficient [25]. Dice coefficient overlap for two labels X and Y is defined by the following equation: 
 

!"#$ = !2 ! !! ∩ !!
! + |!| 

 
Dice coefficients were measured between each subject parcellation label and the corresponding label of the target 
image. Dice coefficients were then averaged across all labels to render an average Dice overlap measure. 
Additionally, average Dice overlap was computed for cortical labels and subcortical labels, respectively.  
 

 
Figure 4. Visualization of the joint fusion labels made for the ENIGMA-Mega MDT (top) and MNI152 template (bottom). The 
mega MDT and MNI152 templates are shown without labels overlaid on far right. The ENIGMA-Mega MDT resembles the 
MNI152 as it is constructed from brain images initially linearly aligned to the MNI152 space.  

 
2.4.3 Similarity metric comparison 
 
Test-retest reliability of Jacobian maps was evaluated while modulating the image similarity cost computation of the 
non-linear registration. Each T1w skull-stripped brain was registered with the single T1w contrast channel to its 
appropriate site-specific MDT. This registration was performed using various image similarity cost metrics 
including: (1) mutual information; (2) cross correlation; (3) mean squared difference; (4) 50% mutual information, 
50% cross correlation; (5) demons metric as implemented in ITK via ANTs [21, 26]. We tested the ICC on the 
unsmoothed test-retest Jacobian maps of each registration, as described in section 2.4.1.  
 
3. RESULTS  
 
3.1 Jacobian reliability evaluation  
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Figure 5. ICC maps were computed for nine cohorts, each comprised of 40 subjects. Average ICC and standard deviation of the 
ICC maps is visualized here. ICC standard deviation ranged from 0.0 to 0.32 across all registrations and was generally greatest in 
the medial orbitofronal region of the brain. As the ICC of both single-single and single-multi for each cohort were calculated 
after the registration to the single-channel cohort template, the maps appear similar (though not identical) after being warped with 
either the single-channel or the multi-channel registration scheme to the ENGIMA-Mega MDT, respectively. 
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Figure 6. Shown here are the ICC signal-to-noise (SNR) maps, computed by dividing each cohort’s ICC map by its respective 
standard deviation, and then averaged across the nine cohorts. SNR is generally the highest in the lateral ventricle areas to the 
target template. Registration to the ENIGMA-Mega MDT showed notably higher SNR that registration to the MNI152 template. 
SNR generally decreased ventrally.  The single-multi and single-single registrations show high SNR along the cortical gray 
matter ribbon, while the multi-multi registration does not. 

 
3.2 Label overlap evaluation  
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Figure 7. Boxplots showing the average label overlap between individual parcellations and parcellations in the ENIGMA-Mega 
MDT and MNI152 template space, for each registration scheme. Average cohort values are shown as colored dots overlaid on 
each boxplot. 

The multi-multi registration scheme achieved the greatest Dice overlap on average in three separate comparisons: 1) 
average dice across all Freesurfer parcellation labels; 2) average Dice across all parcellation labels of the cortical 
grey matter mask; 3) average Dice coefficient across all parcellation labels of the subcortical structures.  
 
3.3 Similarity metric evaluation  
 

 
Figure 8. Voxelwise ICC of Jacobian maps in the QTIM cohort.  
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Figure 9. Voxelwise ICC of Jacobian maps in the ADNI_2 cohort.  

In Figures 7 and 8 we show the results of ICC after changing the image similarity cost metric for the Jacobian test-
retest reliability. As expected, performance varies by dataset and by metric. Registration guided by the Demons 
metric performs comparatively worse; specifically, it results in lower ICC in white matter areas of the target 
template. Registrations guided by mutual information exhibit lower reliability near the edge of the template brain -- 
an area susceptible to errors in brain extraction. Registrations guided by cross correlation show slightly lower ICC 
around the subcortical structures and peripheral white matter regions.  
 
4. DISCUSSION 
 
To harmonize voxelwise processing protocols across cohorts for joint statistical analyses, we must ensure reliable 
estimates across cohorts in relation to the many parameters that can be adjusted and tuned for registration. Here we 
evaluate the performance of the non-linear registration tools used in our multi-site tensor-based morphometry 
(TBM) framework, which to the best of our knowledge is the first cross-cohort evaluation aimed to pooling multisite 
statistics in a stable manner. We find that a two step approach to normalizing TBM measures is more reliable than 
the alternative of using a general stereotaxic target such as the MNI152 template. The two-step approach also results 
in higher Dice coefficients of overlap when individual labels are transformed into the final space, where meta-
analysis occurs. The benefit of using site-specific MDTs as we see here is corroborated by prior work highlighting 
the benefits of age-specific templates [27, 28]. 
 
We find that multi-multi registrations achieve the highest label overlap; this is generally expected, as the additional 
channels of the multi-channel registration are comprised of the same labels used in the Dice overlap analysis. While 
the Dice overlap measure was calculated by averaging each of the subcortical and cortical regions separately, and 
the registration channels were driven by 1) all subcortical regions merged and smoothed under one label and 2) all 
cortical regions together, there is still an inherent bias in the estimates. Although the multi-channel registration is 
only partially weighted by these channels (the T1w channel is weighted the most), they guide the overall registration 
enough to make Dice measures significantly higher. In future work, we will use a different software to calculate the 
parcellations for Dice overlap than the one used for the parcellations driving the registration (such as FSL’s fast) to 
remove biases or circularity in estimating Dice overlap coefficients [29]. 
 
We also see that in these multi-multi registrations, the reliability of the voxelwise Jacobian maps near the subcortical 
structures is lower than in the registrations where a single channel is used within cohorts. The decreased voxelwise 
ICC could indicate inconsistent segmentation between test and retest scans, or that perhaps quality-control that was 
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not rigorous enough to include manual edits. Due to the large sample sizes in many cohorts, manual edits of 
automated segmentations may be time consuming, so we cannot assume all cohorts would perform rigorous 
correction of segmentations. Here, through our multi-multi analysis, we see the consequences of carrying forward 
these imperfections in an added channel of registration.  Another reason for reduced SNR in the multi-multi scheme 
may be inconsistencies in automated segmentations from one time point to the next; FreeSurfer now has 
implemented a longitudinal scheme, which may provide more stable estimates for within subject segmentations [30]. 
This may in turn improve reliability estimates for voxelwise registration schemes using this prior information. 
 
When evaluating the performance of various image similarity cost metrics, there was a general pattern of decreased 
reliability in the subcortical regions of the target template across all metrics. As expected, performance of these 
metrics can change considerably for different cohorts.  
 
 
5. CONCLUSIONS 
 
Reliability of the Jacobian maps differs across metrics and cohorts. As most of the TBM estimates across the 
parameters we tested are extremely reliable across 9 cohorts of various populations and imaging parameters, it is 
acceptable to keep one set of chosen metrics in our framework for multi-site voxelwise TBM meta-analysis. As 
expected, the two-step multi-site registration greatly outperforms that of a single step registration to a single 
MNI152 template. Future work will further evaluate the added benefit of incorporating additional anatomical 
information into the registration between the cohort specific MDT and the ENIGMA-Mega MDT.  
 
ACKNOWLEDGMENTS 
 
This study was funded in part by NIH ENIGMA Center grant U54 EB020403, supported by the Big Data to 
Knowledge (BD2K) Centers of Excellence program. 
 
ADNI_1 & ADNI_2: Data collection and sharing for this project was funded by the Alzheimer's Disease 
Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department 
of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National 
Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: 
AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; 
Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and 
Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE 
Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson 
Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, 
LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal 
Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health 
Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by 
the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern 
California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease 
Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for 
Neuro Imaging at the University of Southern California. 
 
BrainGSP: Data were provided [in part] by the Brain Genomics Superstruct Project of Harvard University and the 
Massachusetts General Hospital, (Principal Investigators: Randy Buckner, Joshua Roffman, and Jordan Smoller), 
with support from the Center for Brain Science Neuroinformatics Research Group, the Athinoula A. Martinos 
Center for Biomedical Imaging, and the Center for Human Genetic Research. 20 individual investigators at Harvard 
and MGH generously contributed data to GSP Open Access Data Use Terms Version: 2014-Apr-22 the overall 
project. 
 
CoRR: The National Institute on Drug Abuse (NIDA) and the National Natural Science Foundation of China 
(NSFC) have been instrumental in the CoRR collaboration providing the necessary funding and manpower to build 
the foundation of the project along with the Child Mind Institute, the Institute of Psychology, Chinese Academy of 
Sciences and the Nathan Kline Institute. 

12



 

 
QTIM: This study was supported by grant T15 LM07356 from the NIH/National Library of Medicine, and Project 
Grant 496682 from the National Health and Medical Research Council, Australia. We are extremely grateful to the 
twins for their participation, to the radiographer, Matt Meredith, Centre for Magnetic Resonance, University of 
Queensland, for image acquisition, and research nurses, Marlene Grace and Ann Eldridge, Queensland Institute of 
Medical Research, for twin recruitment. 
 
 
REFERENCES  
 
[1] P. M. Thompson, J. L. Stein, S. E. Medland, D. P. Hibar, A. A. Vasquez, M. E. Renteria, et al., "The 

ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data," Brain 
Imaging and Behavior, vol. 8, pp. 153-182, 2014. 

[2] D. P. Hibar, J. L. Stein, M. E. Renteria, A. Arias-Vasquez, S. Desrivières, N. Jahanshad, et al., "Common 
genetic variants influence human subcortical brain structures," Nature, vol. 520, pp. 224-229, 2015. 

[3] S. E. Medland, N. Jahanshad, B. M. Neale, and P. M. Thompson, "Whole-genome analyses of whole-brain 
data: working within an expanded search space," Nature Neuroscience, vol. 17, pp. 791-800, 2014. 

[4] B. Fischl, "FreeSurfer," Neuroimage, vol. 62, pp. 774-781, 2012. 
[5] X. Hua, D. P. Hibar, C. R. Ching, C. P. Boyle, P. Rajagopalan, B. A. Gutman, et al., "Unbiased tensor-

based morphometry: improved robustness and sample size estimates for Alzheimer's disease clinical trials," 
Neuroimage, vol. 66, pp. 648-661, 2013. 

[6] J. L. Stein, X. Hua, S. Lee, A. J. Ho, A. D. Leow, A. W. Toga, et al., "Voxelwise genome-wide association 
study (vGWAS)," Neuroimage, vol. 53, pp. 1160-1174, 2010. 

[7] D. P. Hibar, J. L. Stein, O. Kohannim, N. Jahanshad, A. J. Saykin, L. Shen, et al., "Voxelwise gene-wide 
association study (vGeneWAS): multivariate gene-based association testing in 731 elderly subjects," 
Neuroimage, vol. 56, pp. 1875-1891, 2011. 

[8] N. K. Focke, G. Helms, S. Kaspar, C. Diederich, V. Tóth, P. Dechent, et al., "Multi-site voxel-based 
morphometry—not quite there yet," Neuroimage, vol. 56, pp. 1164-1170, 2011. 

[9] J. Jovicich, S. Czanner, D. Greve, E. Haley, A. van der Kouwe, R. Gollub, et al., "Reliability in multi-site 
structural MRI studies: effects of gradient non-linearity correction on phantom and human data," 
Neuroimage, vol. 30, pp. 436-443, 2006. 

[10] A. D. Leow, A. D. Klunder, C. R. Jack, A. W. Toga, A. M. Dale, M. A. Bernstein, et al., "Longitudinal 
stability of MRI for mapping brain change using tensor-based morphometry," Neuroimage, vol. 31, pp. 
627-640, 2006. 

[11] N. Jahanshad, G. Roshchupkin, J. Faskowitz, D. P. Hibar, B. A. Gutman, H. H. Adams, et al., "Multi-site 
meta-analysis of image-wide genome-wide associations of morphometry," in MICCAI Imaging Genetics 
Workshop, 2015, 2015. 

[12] P. M. Thompson, O. A. Andreassen, A. Arias-Vasquez, C. E. Bearden, P. S. Boedhoe, R. M. Brouwer, et 
al., "ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide," 
Neuroimage, 2015. 

[13] L. Schmaal, D. J. Veltman, T. G. van Erp, P. Sämann, T. Frodl, N. Jahanshad, et al., "Subcortical brain 
alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working 
group," Molecular Psychiatry, 2015. 

[14] T. van Erp, D. Hibar, J. Rasmussen, D. Glahn, G. Pearlson, O. Andreassen, et al., "Subcortical brain 
volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA 
consortium," Molecular Psychiatry, 2015. 

[15] C. R. Jack, M. A. Bernstein, N. C. Fox, P. Thompson, G. Alexander, D. Harvey, et al., "The Alzheimer's 
disease neuroimaging initiative (ADNI): MRI methods," Journal of Magnetic Resonance Imaging, vol. 27, 
pp. 685-691, 2008. 

[16] A. J. Holmes, M. O. Hollinshead, T. M. O’Keefe, V. I. Petrov, G. R. Fariello, L. L. Wald, et al., "Brain 
Genomics Superstruct Project initial data release with structural, functional, and behavioral measures," 
Scientific data, vol. 2, 2015. 

[17] X.-N. Zuo, J. S. Anderson, P. Bellec, R. M. Birn, B. B. Biswal, J. Blautzik, et al., "An open science 
resource for establishing reliability and reproducibility in functional connectomics," Scientific Data, vol. 1, 
2014. 

13



 

[18] B. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee, "Symmetric diffeomorphic image registration 
with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain," Medical 
Image Analysis, vol. 12, pp. 26-41, 2008. 

[19] A. Klein, J. Andersson, B. A. Ardekani, J. Ashburner, B. Avants, M.-C. Chiang, et al., "Evaluation of 14 
nonlinear deformation algorithms applied to human brain MRI registration," Neuroimage, vol. 46, pp. 786-
802, 2009. 

[20] B. B. Avants, N. J. Tustison, M. Stauffer, G. Song, B. Wu, and J. C. Gee, "The Insight ToolKit image 
registration framework," Frontiers in Neuroinformatics, 2014. 

[21] B. B. Avants, N. J. Tustison, G. Song, P. A. Cook, A. Klein, and J. C. Gee, "A reproducible evaluation of 
ANTs similarity metric performance in brain image registration," Neuroimage, vol. 54, pp. 2033-2044, 
2011. 

[22] M. Jenkinson, C. F. Beckmann, T. E. Behrens, M. W. Woolrich, and S. M. Smith, "FSL," Neuroimage, vol. 
62, pp. 782-790, 2012. 

[23] H. Wang, J. W. Suh, S. R. Das, J. B. Pluta, C. Craige, and P. A. Yushkevich, "Multi-atlas segmentation 
with joint label fusion," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 35, pp. 
611-623, 2013. 

[24] H. Wang, J. W. Suh, J. Pluta, M. Altinay, and P. Yushkevich, "Optimal weights for multi-atlas label 
fusion," in Information Processing in Medical Imaging, 2011, pp. 73-84. 

[25] N. Tustison and J. Gee, "Introducing Dice, Jaccard, and other label overlap measures to ITK," Insight J, pp. 
1-4, 2009. 

[26] J.-P. Thirion, "Image matching as a diffusion process: an analogy with Maxwell's demons," Medical Image 
Analysis, vol. 2, pp. 243-260, 1998. 

[27] V. Fonov, A. C. Evans, K. Botteron, C. R. Almli, R. C. McKinstry, D. L. Collins, et al., "Unbiased average 
age-appropriate atlases for pediatric studies," NeuroImage, vol. 54, pp. 313-327, 2011. 

[28] U. Yoon, V. S. Fonov, D. Perusse, A. C. Evans, and B. D. C. Group, "The effect of template choice on 
morphometric analysis of pediatric brain data," Neuroimage, vol. 45, pp. 769-777, 2009. 

[29] R. A. Heckemann, S. Keihaninejad, P. Aljabar, D. Rueckert, J. V. Hajnal, A. Hammers, et al., "Improving 
intersubject image registration using tissue-class information benefits robustness and accuracy of multi-
atlas based anatomical segmentation," Neuroimage, vol. 51, pp. 221-227, 2010. 

[30] M. Reuter and B. Fischl, "Avoiding asymmetry-induced bias in longitudinal image processing," 
Neuroimage, vol. 57, pp. 19-21, Jul 1 2011. 

 

14



Relative Value of Diverse Brain MRI and Blood-Based 
Biomarkers for Predicting Cognitive Decline in the Elderly  

 

Sarah K. Madsena, Greg Ver Steegc, Madelaine Daianua,b, Adam Mezhera, Neda Jahanshada,  
Talia M. Nira, Xue Huaa, Boris A. Gutmana, Aram Galstyanc, Paul M. Thompsona,b,d 

 

aImaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, 
 University of Southern California, Marina del Rey, CA, USA  

bDepartment of Neurology, UCLA School of Medicine, Los Angeles, CA, USA 
cUSC Information Sciences Institute, Marina del Rey, CA, USA 

dDepartments of Neurology, Psychiatry, Radiology, Engineering, Pediatrics, and Ophthalmology,  
University of Southern California, Los Angeles, CA, USA 

ABSTRACT 

Cognitive decline accompanies many debilitating illnesses, including Alzheimer’s disease (AD). In old age, brain tissue 
loss also occurs along with cognitive decline. Although blood tests are easier to perform than brain MRI, few studies 
compare brain scans to standard blood tests to see which kinds of information best predict future decline. In 504 older 
adults from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), we first used linear regression to assess the 
relative value of different types of data to predict cognitive decline, including 196 blood panel biomarkers, 249 MRI 
biomarkers obtained from the FreeSurfer software, demographics, and the AD-risk gene APOE. A subset of MRI 
biomarkers was the strongest predictor. There was no specific blood marker that increased predictive accuracy on its 
own, we found that a novel unsupervised learning method, CorEx, captured weak correlations among blood markers, and 
the resulting clusters offered unique predictive power. 

Keywords: MRI, machine learning, brain, aging, cognitive decline 

1. INTRODUCTION  
Brain structure and the rate of brain tissue loss in old age can be assessed with a variety of neuroimaging tools [1-3]. An 
important question is which MRI measurements best predict cognitive decline, in elderly people with or without 
Alzheimer’s disease (AD). We also need to understand how these brain MRI biomarkers perform in comparison to other 
biomarkers, such as those obtained from standard clinical tests of blood samples [4] and genetics [5], now that genotype 
information is readily available from saliva samples. 

We considered a diverse set of over 400 potential biomarkers in 504 older adults from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI). Brain MRI measures included volume, gray matter thickness, and surface area 
measures for a standard set of anatomical regions of interest. We included potential predictors of cognitive decline 
covering a broad spectrum of health measures. We also included the AD-risk gene APOE –  the strongest known genetic 
risk factor for late-onset AD [6], increasing lifetime risk around 3-fold for each copy of the APOE4 allele carried [5]. 

We first used linear regression with cross-validation to compare the predictive value of including different types of 
variables (blood, MRI, genetic, demographic). To reduce dimensionality and avoid over-fitting, we used LASSO to 
select smaller subsets of variables within each type. We also used a novel unsupervised learning method, CorEx [7, 8], to 
learn low-dimensional representations that capture correlations among variables and to construct a hierarchical network 
that visually and quantitatively characterizes relationships among variables. 

2. METHODOLOGY 
2.1 Study Participants and Biomarkers 

We analyzed data from ADNI participants for whom both MRI and blood test biomarkers were available, resulting in a 
sample of n=504 older adults (age: 75.0 ± 7.2 years; 198 women, 306 men; education: 15.6 ± 3.0 years; 57 cognitively 
normal, 351 with mild cognitive impairment, 97 with probable AD). For each participant, data was available for at least 
152 of the biomarkers in our list. Cognitive decline was defined as one-year decline in Mini-Mental State Exam 
(MMSE) score [9]. Clearly, more refined measures of clinical decline are possible – including ADAS-Cog, clinical 
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dementia ratings, performance on specific neurocognitive tests – but here we used MMSE as it is a simple but widely 
used measure of decline.  

Our model included a total of 451 predictor variables. This extensive list included 196 laboratory measures and 249 
MRI measures obtained with the FreeSurfer analysis package. We also included standard demographic information (age, 
sex, years of education), height, weight, and APOE genotype (number of copies of APOE4 carried by each participant).  

Laboratory measures included blood tests relating to metabolism, kidney function, immune system function, growth 
factor levels, tumor biomarkers, inflammation levels, nutrition, oxidative stress, cardiovascular function, blood 
components (including red and white blood cell counts), hormone levels, liver function, and amyloid and tau pathology. 
A urine test of kidney function and a cerebrospinal fluid test (lumbar puncture/spinal tap) for amyloid and tau pathology 
were included. MRI measures included the volume of subcortical and cortical brain regions as well as mean gray matter 
thickness and total gray matter surface area for a standard set of cortical brain regions, as segmented by the 2006 
Desikan-Killiany atlas (http://surfer.nmr.mgh.harvard.edu/). 

ADNI was launched in 2004 by the National Institute of Health, the Food and Drug Administration, private 
pharmaceutical companies, and non-profit organizations to identify and evaluate biomarkers of AD for use in multisite 
studies. All ADNI data are publicly available online. The study was conducted according to the Good Clinical Practice 
guidelines, the Declaration of Helsinki, and the US 21 CFR Part 50–Protection of Human Subjects, and Part 56–
Institutional Review Boards. Written informed consent was obtained from all participants in advance. 

2.2 Scan Acquisition  

Brain MRI data from 504 ADNI participants was included. High-resolution T1-weighted structural MRI brain scans 
were analyzed for all ADNI participants included in this analysis [10]. Scanning occurred on General Electric 
(Milwaukee, Wisconsin, USA), Siemens (Germany), or Philips (The Netherlands) scanners at 1.5T. Scan acquisition 
parameters were: 3D sagittal magnetization-prepared rapid gradient-echo (MP-RAGE) protocol; repetition time (2400 
ms), flip angle (8°), inversion time (1000 ms), 24-cm field of view, a 192×192×166 acquisition matrix, a voxel size of 
1.25×1.25×1.2 mm3. Each scan was later reconstructed to 1 mm isotropic voxels. 

2.3 Quantitative Predictive Power 

We predicted cognitive decline for n=504 individuals for different sets of predictors using linear regression. Instead of 
predicting the raw change in MMSE score over one year, we predicted the percentile (based on a ranking) of a person’s 
change with respect to all other ADNI study participants. Prediction using the raw score was extremely sensitive to 
outliers: while most MMSE score changes were less than 5 points, a few individuals appeared to lose more than 15 
points, as shown in Figure 1.  A person losing a single point is in the 46th percentile while anyone losing more than 10 
points is below the 1st percentile. Of course, other definitions or reference cohorts would produce a somewhat different 
percentile ranking system.  
 

 
Figure 1. Histogram of changes in MMSE score over one year, in 504 ADNI participants. 

For each set of predictors, we used 10-fold cross-validation and we report the mean across all ten folds of the mean 
squared error (MSE) on each test fold (using the same random set of folds for each experiment).  This score estimates 
our prediction error on previously unseen examples. The accuracy of this estimate is reflected by the standard error of 
the mean across folds. The baseline MSE of 993.9 is obtained from always predicting the average percentile; the RMSE 
for this strategy is 31.5 percentile points. Regressing on, e.g., all 249 MRI measures leads to MSE worse than the 
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baseline, due to over-fitting. Therefore, for each group of variables, we first performed feature selection with LASSO 
[11].  

The LASSO hyper-parameters were set using 10-fold cross-validation. LASSO selected a set of 47 MRI measures 
(italicized in the graph in Fig. 2), three blood tests (percent lymphocytes, CD5, APO C-I) and two cerebrospinal fluid 
biomarkers (amyloid beta I-42, ptau), along with age, weight, height, and APOE genotype.  

Prediction results using different subsets of these variables are summarized in the Results. In addition to these 
variables, we also included a set of factors constructed to be maximally informative about correlations in the data using 
the novel machine learning technique, CorEx [7, 8].  

2.4 Correlation Explanation (CorEx) 

The recently introduced method of Correlation Explanation (CorEx) is an information-theoretic way to construct 
representations of high-dimensional data that are maximally informative about the data in some sense 
(http://www.github.com/gregversteeg/CorEx) [7, 8]. Let X=(X1,…Xn) denote random variables that represent some 
observed measurements. We assume that we have iid samples of X drawn from some unknown distribution, pX(X=x), or 
p(x) for short. Information is measured using a multivariate mutual information measure historically called “total 
correlation” (TC), although in modern terms it would be better described as a measure of total dependence. TC is defined 
as: 

		
TC(X )= DKL(p(x)|| p(xi )

i=1

n

∏ )= 	 H(Xi )−H(X )i∑  

where H denotes the Shannon entropy, and DKL is the Kullback-Leibler divergence. 
The total correlation among a group of variables, X, after conditioning on some other variable, Y, can be simply 

defined in terms of standard conditional entropies as: 

		
TC(X |Y )= DKL(p(x | y)|| p(xi | y)

i=1

n

∏ )= H(Xi |Y )−H(X |Y )i∑  

Then we can measure the extent to which some other variable, Y, explains the correlations in X by looking at how 
much the total correlation is reduced by conditioning on Y: 

		TC(X ;Y )=TC(X )−TC(X |Y )= I(Xi ;Y )− I(X ;Y )i∑  

TC(X|Y) is zero (and TC(X;Y) maximized) if and only if the distribution of X’s conditioned on Y factorizes. This will 
be the case if Y contains full information about all of the common causes of the Xi’s (in other words we say that Y 
explains all of the correlation in X). 

The principle behind Correlation Explanation (CorEx) is to search for latent factors, Y1,…,Ym, that maximize 
TC(X;Y). 

		 max∀j,p(y j|x )TC(X ;Y )  

This optimization searches all possible functions of x for the m representatives that are most informative about the 
data. For a more detailed discussion of how this optimization is carried out see [7, 8]. This procedure can be carried out 
hierarchically so that we construct variables Y that explain correlations in X, then we can construct variables Z, which 
explain correlations in Y, etc. Applying this hierarchical procedure to MRI data leads to the structure in Figure 2. This 
technique has been used to out-perform standard learning methods for recovering structure in latent tree models, to 
perfectly reconstruct personality types from survey data, to automatically identify stock market sectors, and to 
automatically discover genetic sequences related to common ancestral origins [7, 8]. 

3. RESULTS 
We computed the relative predictive accuracy of the biomarker groups alone and combined using both the original 
(“raw”) data and using low-dimensional representations of the data learned with CorEx (Table 1).  

A graph of the structure of the latent factors for the brain MRI biomarkers in predicting cognitive decline is shown 
in Figure 2. Each raw predictive variable selected for inclusion by LASSO is italicized and slightly enlarged. Each 
selected CorEx factor (numbered circles) is italicized, enlarged, and highlighted in yellow. Figure 2 shows brain MRI 
biomarkers only. The blood test biomarkers (not shown) were automatically split into a separate set of clusters by the 
unsupervised CorEx algorithm.  
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Figure 2. Graph of latent factors for brain MRI biomarkers of cognitive decline constructed by CorEx. Colors denote 
variable types (green=volume, red=gray matter thickness, blue = gray matter surface area). Edge width reflects mutual 
information, and node size reflects strength of correlation among connected variables. The subset of predictors of 
cognitive decline chosen by LASSO are in a larger, italic font. Note how the variables are grouped together in a 
biologically meaningful structure – for instance, measures of gray matter thickness are more closely grouped together. 
Importantly, measures that share high mutual information also tend to contribute redundant information, so we get 
diminishing returns from measuring all of them. 
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Separately: Raw CorEx 
 Combined: Raw Raw + CorEx 

Blood Test 
Baseline 993.9 -- Brain MRI + Blood Test 805.3, 32.8 777.3, 25.5 

Blood Test 938.3, 39.6 903.7, 40.5 Brain MRI + Other 790.3, 25.2 -- 

Brain MRI 800.8, 22.4 907.5, 22.5 Blood Test + Other 940.2, 42.3 -- 
Other (age, weight, 

height, APOE) 969.5, 31.9 -- Brain MRI + Other + 
Blood Test 

800.6, 32.6 771.4, 28.2 

Table 1. Relative predictive power of biomarker groups (mean squared error, standard error). Lower values indicate 
better performance (highlighted in blue).  
 

4. NEW OR BREAKTHROUGH WORK BEING PRESENTED 
Does combining different types of biomarkers improve accuracy in predicting cognitive decline? For the first time, 

we answer this question using a novel unsupervised machine learning technique, CorEx, and identified groups of 
measures with high multivariate mutual information. Combining the brain MRI and other biomarkers (demographics and 
genetics) achieved the greatest predictive accuracy compared to any individual biomarker group or combination of 
biomarker groups. Considering the high predictive power of the raw brain MRI measures [12], adding the blood test 
markers may not significantly improve prediction beyond what can be achieved with brain MRI biomarkers alone.  

Even so, the CorEx representation of blood test biomarkers was a better predictor than the biomarkers individually. 
So we tested whether combining the CorEx factors with the raw brain MRI and other biomarker groups would further 
improve the prediction of cognitive decline. The performance did improve, compared to using all raw biomarker groups. 
In this combination, the best predictive accuracy was obtained when using all three biomarker groups together (CorEx 
blood test + raw brain MRI + raw other). This suggests that not only do correlations among blood biomarkers contain 
more valuable information than any individual biomarker on its own, but this information is not already present in MRI, 
APOE, or demographics.  

5. CONCLUSION 
In the raw data, the brain MRI biomarkers were the best predictors of cognitive decline, followed by the blood tests, and 
then the other categories of predictors (demographics and genetics).  

Given a set of correlated predictors, LASSO tends to pick the best predictor and discards the rest. Instead of 
discarding correlations, CorEx will search for a latent factor that captures as much information as possible about all the 
correlated predictors. While the blood test biomarkers were relatively poor predictors individually, the CorEx 
representation of the blood data was a better predictor, suggesting that correlations among blood markers are more useful 
than the values of individual markers. 

Interpreting the graphical representations of the data structure (Fig. 2) leads us to several key conclusions. The 
graph highlights how each individual biomarker variable relates to the entire set of biomarker variables. First, the 
unsupervised CorEx algorithm split the blood test and brain MRI biomarkers into two separate sets of clusters. This 
suggests that there is relatively little correlation between the variables in these two biomarker groups. This is somewhat 
unexpected, as these blood test biomarkers were included in ADNI based on evidence that they were associated with 
brain health, although the vast majority of this literature is based on studies analyzing a single blood test on its own. As 
expected, different brain MRI measures (volume, thickness, surface area) are largely clustered together, indicating a 
clear correlation in measures across brain regions. The clusters also correspond to known anatomical and functional 
subdivisions within the human brain, such as the clustering of temporal and frontal lobe substructures into distinct 
clusters. 
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ABSTRACT 

Diffusion-weighted MR imaging (DWI) is a powerful tool to study brain tissue microstructure. DWI is sensitive to 
subtle changes in the white matter (WM), and can provide insight into abnormal brain changes in diseases such as 
Alzheimer’s disease (AD). In this study, we used 7-Tesla hybrid diffusion imaging (HYDI) to scan 3 transgenic rats (line 
TgF344-AD; that model the full clinico-pathological spectrum of the human disease) ex vivo at 10, 15 and 24 months. 
We acquired 300 DWI volumes across 5 q-sampling shells (b=1000, 3000, 4000, 8000, 12000 s/mm2). From the top 
three b-value shells with highest signal-to-noise ratios, we reconstructed markers of WM disease, including indices of 
axon density and diameter in the corpus callosum (CC) – directly quantifying processes that occur in AD. As expected, 
apparent anisotropy progressively decreased with age; there were also decreases in the intra- and extra-axonal MR signal 
along axons. Axonal diameters were larger in segments of the CC (splenium and body, but not genu), possibly indicating 
neuritic dystrophy – characterized by enlarged axons and dendrites as previously observed at the ultrastructural level 
(see Cohen et al., J. Neurosci. 2013). This was further supported by increases in MR signals trapped in glial cells, CSF 
and possibly other small compartments in WM structures. Finally, tractography detected fewer fibers in the CC at 10 
versus 24 months of age. These novel findings offer great potential to provide technical and scientific insight into the 
biology of brain disease. 
 
Keywords: axonal diameter, multi-shell, HARDI, hybrid diffusion imaging (HYDI), rat, Alzheimer’s disease 

1. INTRODUCTION  
Diffusion-weighted MR imaging (DWI) is sensitive to the organization and geometry of semipermeable barriers within 
living tissue microstructure  [1, 2]. These barriers affect water diffusion in the white matter (WM) and can be picked up 
in DWI over millisecond timescales [1, 3]. In clinical research, these changes in the WM are most commonly 
characterized by measures of mean diffusivity and fractional anisotropy (FA) [4] – as reconstructed from the standard 
diffusion tensors. But although these metrics provide statistics of diffusion anisotropy at voxel level, they do not directly 
relate to features of tissue microstructure – such as cell size and packing density [1].  

Axonal density and diameter are traditionally estimated with invasive histological procedures [e.g., electron 
microscopy (EM)] and therefore, are limited to post mortem tissue. Artifacts may arise from histological procedures 
(e.g., shrinkage, etc.) and from sampling of small regions of tissue [5]. To overcome some of these limitations, a few 
DWI-based methods have been proposed to map the axonal density and diameter of the WM matter structure, such as 
AxCaliber [6] [7], and more recently ActiveAx [1], that models orientation-invariant indices of axonal diameter and 
density. ActiveAx estimates the MR signal in four compartments of the WM, including intra-, extra-axonal populations 
of water, stationary water in glial cells and other small structures, and cerebrospinal fluid (CSF) [1]. 

Here, we implemented the ActiveAx framework and estimated indices of axonal density and diameter in three 
transgenic Alzheimer rats (line TgF344-AD) at different time points in the disease – 10, 15 and 24 months, using high-
field multi-shell imaging, also known as hybrid diffusion imaging (HYDI) [8]. We collected 300 diffusion volumes 
across 5 distinct q-sampling shells and reconstructed the diffusion signal using the diffusion tensor imaging (DTI) model 
[2] in the corpus callosum (CC). Based on previous EM findings in these transgenic rats [9], we expected to find 
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indications of dystrophic neurites, or axonal swelling, characterized by enlarged axons and dendrites (possibly filled with 
vacuoles) as the disease progresses. We provide a summary of axonal density and diameter indices in addition to 
descriptors of anisotropy and demonstration of tractography based on HYDI, to show altered fiber integrity. 

2. METHODS 
2.1 Data and Analysis 

Three transgenic Alzheimer rats (line TgF344-AD) were generated on a Fischer 344 background by co-injecting rat 
pronuclei with two human genes driven by the mouse prion promoter: “Swedish” mutant human APP (APPsw) and Δ 
exon 9 mutant human presenilin-1 (PS1ΔE9) [18]. Transgene integration was confirmed by genotyping and expression 
levels were evaluated by Western blot of brain homogenates. All experiments were conducted with protocols approved 
by the Institutional Animal Care and Use Committee (IACUC). The protocol called ‘Peripheral TGF-beta Pathway 
Inhibitor Therapy in Alzheimer's Rats’ was approved by the University of Southern California IACUC (Protocol 
Number: 20044). TgF344-AD rats were housed at the University of Southern California, Zilkha Neurogenetic Institute 
animal facility. Rats were maintained on normal lab chow and generally housed two per cage, in order to allow 
socialization. Nesting material was provided to all rats, and environmental enrichment in the form of plastic vertical 
barriers or tubes was added to all cages. Additionally, extraneous noise that may induce stress was minimized by 
keeping doors closed to housing rooms. A cage cleaning protocol was adopted that balanced hygiene with the need to 
retain some odor cues (e.g., scent-marked nesting material) to avoid stress and aggression. Finally, gentle and frequent 
handling of rats early in life was ensured. Before scanning, we anesthetized the animals with isoflurane, and then 
performed euthanasia. All efforts were made to minimize suffering. 

We scanned the three rats ex vivo at 10, 15 and 24 months with a 7 Tesla Bruker BioSpin MRI scanner at the 
California Institute of Technology. After the three rats were sacrificed at the aforementioned ages, fixed brains (intact 
within the skull) were soaked in a gadolinium contrast agent (5mM ProHance) for 4 days prior to imaging to decrease 
the overall T1 of the tissue [10]. To ensure no leakage and that the signal would not change during acquisition, the 
samples were immersed in galden (perfluoropolyether with same magnetic susceptibility as water). During acquisition, 
the temperature was monitored via a fiber optic temperature sensor near the sample (and was 20°C for the whole scan) 
[4].  

Using a 3D 8-segment spin echo EPI sequence with 1 average, we acquired 300 DWI volumes (133x233x60 matrix; 
voxel size: 0.15x0.15x0.25 mm3; TE=34 ms; TR=500 ms; δ=11 ms; Δ=16 ms), yielding a 20-hour scan time. 
Specifically, 60 DWI volumes were acquired for each of the 5 q-sampling shells, b = 1000, 3000, 4000, 8000 and 12000 
s/mm2, with the same angular sampling, and 5 T2-weighted volumes with no diffusion sensitization (b0 images). The 
relatively long δ and Δ values were required to achieve the largest b-values within the duty cycle constraints of our 
gradient coils. This long scan time precludes in vivo imaging, but this is not an issue for fixed samples [11]. 

During preprocessing, extra-cerebral tissue was removed using the “skull-stripping” Brain Extraction Tool from 
BrainSuite (http://brainsuite.org/) for both the anatomical images and the DWIs. We corrected for eddy current 
distortions using the “eddy correct FSL” tool (www.fmrib.ox.ac.uk/fsl) for which a gradient table was calculated to 
account for the distortions. DWIs were up-sampled to the resolution of the anatomical images (with isotropic voxels) 
using FSL’s flirt function with 9 degrees of freedom; the gradient direction tables were rotated accordingly after each 
linear registration.  

We calculated the signal-to-noise (SNR) ratio of each q-sampling shell by computing the average diffusion signal in 
the WM structure of each rat and estimated noise from the mean standard deviation of all 5 b=0 s/mm2 images. Then, we 
ran a 2-tailed t-test to determine which b-value weighting provided the highest SNR. 

 
2.2 Axonal Diameter Estimation 

We modeled four tissue compartments in the WM defined based on the population of water molecules as outlined in [1]. 
Each compartment provided a separated normalized MR signal: (1) S1 – signal trapped in the intra-axonal parallel 
cylinders of equal diameter, a, modeled with the Gaussian phase distribution approximation [12]; (2) S2 – signal found in 
the extra-axonal water near but outside the cylinders modeled based on the diffusion tensor (DT) scheme, also assuming 
Gaussian distributed displacements [2]; (3) S3 – signal found in the stationary water (S4 =1 as signal is unattenuated by 
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diffusion weighting) that may be trapped in glial cells and other subcellular structures (4) S4 – signal from the CSF; here, 
the cylinders did not influence the diffusion and the model is isotropic Gaussian displacements [1].   

The equation modeled by ActiveAx assumes that no exchange takes place between the compartments of water 
molecules described above [1]: 

!!S
* = S

0
* f

i
S
ii=1

4∑ (1) 

Here, S* is the MR diffusion signal, S0* is the MR diffusion signal from the b0 image, f1 defines the proportion of 

water molecules in a population, i, where: !! f
i
= 1

i=1

4∑  and !!0 ≤ fi ≤1 . 

The axonal diameter was estimated from the following model:!!E(a) = p(a)ada∫ , where E(a) is the mean axonal 

diameter and p is the true distribution of axon diameters [1]. For more specifics on the model, please refer to [1]. We 
assessed the axonal diameter indices at three different segments of the CC – the splenium, body and genu. In this work, 
we studied the CC as it has larger axonal radii, especially in the middle segment (the body), which can be feasibly 
reconstructed using the ActiveAx method. In addition, the CC does not have crossing fibers where models like DTI 
might fail to accurately reconstruct the intersecting fibers at voxel level. 

3. RESULTS 
To start, we show that the diffusion signal SNR is significantly higher in the lower b-value shells when comparing 

single- and multi-shell reconstructions between b=1000, 3000 and 4000 s/mm2 and b=8000 and 12000 s/mm2 (P=0.03, 2-
tailed t-test) (Fig. 1). Therefore, we selected the lower 3-shell HYDI data to reconstruct the axonal density and diameter 
indices.  

 
Figure 1. Signal-to-noise ratio (SNR) computed from the diffusion signal in the single b-value DWIs and the multi-

shell HYDIs. 

 

For each transgenic Alzheimer rat, we show patterns of alteration directly related to their tissue microstructure 
(summarized in Figs. 2 and 3). The MR signal quantified by the intra- and extra-axonal volume fraction (F1 and F2) 
decreased with disease progression (at the later stages of disease, 15 and 24 months), possibly indicating less directional 
water diffusion. This is closely related to decreases in FA; once again indicating altered anisotropic properties of the 
white matter tissue. The increase in the stationary water volume fraction (F3) and CSF volume fraction (F4) are further 
suggestive of the etiology of brain tissue disruptions noted on EM [9] in the transgenic Alzheimer rats (e.g., axonal 
swelling). Increases in F3 could indicate that more water is being trapped within glial cells and other small 
compartments that are modeled independently of the cylinder-like structures (i.e., modeling the axons).  

In accord with our hypothesis, axonal radii were larger in the body of the CC than in the splenium and genu (Fig. 
3A). Larger axons contain more water and contribute more to the MR signal. With disease progression, axonal radii 
increased in the splenium and body of the CC, but in the genu they showed opposing patterns; axonal radii in the genu 
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were also harder to map, so additional studies are needed to confirm these findings. Finally, from our fiber tract maps we 
show visible decreases in fiber density between the 10 and 24 month old transgenic Alzheimer rats (Fig. 3B). 

 
Figure 2. Plots of mean axonal density and anisotropy in the corpus callosum in each transgenic Alzheimer rat. Mean 
fractional anisotropy (FA) decreased in concordance with decreases in the intra- and extra-axonal volume fraction (F1 
and F2). Stationary water and CSF volume fractions (F3 and F4) showed increasing patterns in the later stages of the 
disease. 

4. NEW OR BREAKTHROUGH WORK BEING PRESENTED 
In this study, we mapped and interpreted neuroimaging indices directly associated with WM microstructure in 

transgenic Alzheimer rats at three stages of the disease. To do this, we computed HYDI-based indices of axonal density 
and diameter and interpreted the observed patterns of disruption in relation to the previously investigated etiology of AD 
in a recent EM ultrastructural study using TgF344-AD rats [9]. For the first time, we show overlapping findings of 
altered WM structure going beyond the commonly reported apparent anisotropy changes in AD.  

 

5. CONCLUSION 
The involvement of the CC in AD is quite well understood, and the parietal, temporal and possibly occipital 

segments are among the first affected. Here, we show patterns of decreasing anisotropy in the CC and indices that may 
contribute to this phenomenon – decreasing intra- and extra-axonal volume fractions. Meanwhile, we also show patterns 
of increasing stationary water volume fraction that may influence the larger axonal radii observed at the later stages of 
the disease. Furthermore, increased CSF volume fractions could be explained by atrophy or tissue loss, and are also 
supported by the lower fiber density in the 24 month old transgenic Alzheimer rat. In this preliminary study we do not 
have the necessary number of subjects to detect statistically significant differences in the changes observed in the WM 
microstructure, but the landscape of disruption aligns with changes expected from EM in the cortex and hippocampus in 
this same transgenic Alzheimer rat line [9]. 

Understanding the network of WM pathways that supports communication in the brain is critically important to 
detecting and eventually preventing disease. Measures of axonal density and diameter are important morphological 
properties of WM, as their integrity is directly related to the rate of information transfer of a nerve bundle and can 
provide insight into the effects of neurological disease [5], otherwise not detectable with macroscopic neuroimaging 
metrics. The benefits of HYDI and detailed microscopic indices may be valuable for human [13-16] and animal 
connectome (Fig. 3C) projects and clinical research [4, 17, 18].  
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Figure 3. Maps of axonal diameter and fiber density in three transgenic Alzheimer rats. A. Axonal diameter indices were 
evaluated in the splenium, body and genu of the corpus callosum (CC) across the different stages of the disease. As 
expected, the axonal diameter was larger in the body of the CC than in the splenium and genu. With disease progression, 
axonal radii increased in the splenium and body of the CC (but not in the genu) - possibly signs of dystrophic neurites 
and axonal swelling found in electron microscopy studies in these TgF344-AD rats. B. Fiber density maps in the CC of 
the 10 vs. 24 month old rats indicated loss of fibers with disease progression. C. For our future work, we aim to 
reconstruct whole brain connectivity maps using the fiber density maps as depicted in B. 
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ABSTRACT 
!

Nonlinear  registration algorithms  are routinely  used in brain  imaging,  to align data  for inter-subject and group 
comparisons,  and for voxelwise statistical analyses.  To understand how the choice of registration method  affects 
maps of functional  brain connectivity in a sample of 611 twins, we evaluated three popular  nonlinear  registration 
methods:  Advanced  Normalization Tools (ANTs),  Automatic Registration Toolbox (ART), and FMRIB’s  Non- 
linear  Image Registration Tool (FNIRT). Using both  structural and  functional  MRI, we used each of the  three 
methods  to align the  MNI152 brain  template, and  80 regions of interest (ROIs),  to each subject’s  T1-weighted 
(T1w)  anatomical image.  We then  transformed each subject’s ROIs onto the associated  resting  state  functional 
MRI (rs-fMRI)  scans and  computed a connectivity network  or functional  connectome  for each subject.   Given 
the different degrees of genetic similarity  between pairs of monozygotic (MZ) and same-sex dizygotic (DZ) twins, 
we used structural equation  modeling  to estimate  the  additive  genetic  influences on the  elements  of the  func- 
tion  networks,  or their  heritability.  The  functional  connectome  and  derived  statistics were relatively  robust  to 
nonlinear  registration effects. 
!

Keywords:  nonlinear  registration, inter-subject alignment, structural  tissue  classification,  resting  state  func- 
tional  MRI, functional  connectome,  heritability, default  mode network,  multimodal evaluation 

1. INTRODUCTION 
This  work assesses the  effects of three  different  nonlinear  deformation algorithms,1  when  computing  maps  of 
functional  brain  connectivity.2  We evaluate  their  accuracy  using overlap  metrics  for 80 cortical  and  subcortical 
regions of interest (ROIs)  derived from structural MRI. We also assess whether  functional  connectivity networks 
derived  from resting  state  data  in the ROIs are robust  to the choice of registration algorithm. 

Further author information: (Send  correspondence to George  Hafzalla) 
George  W. Hafzalla:  E-mail:  hafzalla@usc.edu 
Gautam Prasad: E-mail:  gprasad@usc.edu 
Paul M. Thompson: E-mail:  pthomp@usc.edu 
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2. METHODS 
2.1   Sub jects 
We obtained 611 resting state  functional  MRI (rs-fMRI)  and T1-weighted  (T1w) structural MRI brain scans (232 
men, 379 women; mean  age 22.5 ± 2.8 years when scanned)  as part  of the  Queensland  Twin  IMaging (QTIM) 
study,  a neuroimaging  and  genetic  study  of young,  healthy  adult  twins  and  their  family members.   From  this 
sample,  we used a subset  of 276 participants (58% MZ, 42% DZ) for the functional  connectome  analysis,  where 
we excluded a person if their  twin was not also present in the sample.  Opposite-sex  DZ twins were also excluded 
from the functional  connectome  analysis. 

2.2   Acquisition 
rs-fMRI scans were 5 min.  19 sec.  in duration, collected at  4T (Bruker  Medspec),  with parameters: TR/TE = 
2100/30 ms; 230 mm FOV; 64 x 64 acquisition  matrix;  3.6 x 3.6 mm voxels; 3 mm slices/0.6 mm gap.  Participants 
were instructed to  lay awake  with  their  eyes closed and  not  to  focus on particular thoughts.  High resolution 
T1w  structural scans  were acquired  with  an  inversion  recovery  rapid  gradient  echo sequence  (TI/TR/TE = 
700/1500/3.35 ms; 240 mm FOV; 256 x 256 acquisition  matrix;  0.9 x 0.9 x 0.9 mm3 voxels/0  mm gap). 

2.3   Data processing 
We used a variety  of neuroimaging  tools from the  FMRIB  software  library  (FSL).3  rs-fMRI data  was analyzed 
using FSL–FEAT (FMRI Expert Analysis Tool, v5.0.7; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). We performed mo- 
tion correction  using MCFLIRT, non-brain tissue removal using BET (Brain  Extraction Tool), spatial  smoothing 
using a Gaussian  kernel with 6 mm full width  at half maximum,  and high pass temporal filtering of 100 s. Scans 
were registered  to a standard MNI (Montreal Neurological  Institute) atlas  using a 12 degrees of freedom affine 
transform. 

3D T1w structural MRI data  were pre-processed  with FreeSurfer4  (v5.3; http://surfer.nmr.mgh.harvard.edu/) 
to correct intensities in the structural images and label cortical and subcortical regions as defined by the Deskian- 
Killiany  atlas.5   FreeSurfer  outputs were returned to  native  space and  the  cortical  parcellation was binarized, 
dilated  six times and eroded five times to produce  an accurate  subject-specific  brain  mask of the gray and white 
matter. The  purpose  of this  dilation  and  erosion process was to fill any holes in the  mask while maintaining a 
tight fit to the brain.  This mask was used for subsequent data  processing. 

Computing a highly accurate classification  of gray matter for each participant required  a series of steps.  Because 
the  FreeSurfer  binary  mask of the  cortical  ribbon  is susceptible  to gray matter exclusions,  we performed  tissue 
classification  using FSL–FAST  (FMRIB’s  Automated Segmentation Tool)  on the  skull-stripped brain  in native 
space.   This  allowed us to create  a binary  CSF  mask,  which was then  subtracted from our  FreeSurfer-derived 
brain mask.  This brain mask was further  reduced by subtracting binary masks of the following FreeSurfer  parcel- 
lations:  CSF, choroid plexus, corpus callosum, optic chiasm, ventricles,  and white matter. To correct for residual 
errors  in classification  by FSL–FAST, the  FreeSurfer  cortical  and  subcortical parcellations were then  added  to 
the brain  mask.  This mask was binarized  and served as our gray matter mask for subsequent data  analysis  (see 
Figure 1). 

2.4   Nonlinear registration 
Three nonlinear  registration methods,  Advanced Normalization Tools (ANTs),6 Automatic Registration Toolbox 
(ART),7 and FMRIB’s Nonlinear  Image Registration Tool (FNIRT) from FSL, were used to coregister  each par- 
ticipant’s  intensity non-uniformity corrected,  intensity normalized,  and skull-stripped brain image to the MNI152 
brain  template. For each program,  we selected parameter options  that optimized  inter-subject alignment. 

We  created  80 regions  of interest (ROIs)  on the  MNI152  brain  template using  the  AFNI  (Analysis  of Func- 
tional  Neuroimages)8  program  3dUndump. ROIs were spherical  in shape with 3-mm radii.  We placed the center 
of each ROI  in the  centroid  position  of its respective  region.  Center  of gravity  (cog) coordinates  for each ROI 
are shown in Table 1. 
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For  all  subjects,   we applied  each  registration method  to  co-register  their  T1w  image  to  the  MNI152  brain 
template. These transformations were then  used to back-project the  80 ROIs from the  MNI152 brain  template 
to the  native  T1w brain  space (see Figure 1).  Finally,  across all methods,  we applied  to these  ROIs the  affine 
transformations produced  by FSL–FEAT. This moved the native  T1w image space ROIs to the functional  space 
for further  analysis. 
!
2.5   Functional connectome 
We  computed the  functional  connectome9  for each  participant  as  the  connectivity or edge strength between 
all pairs  of the  80 ROIs  or nodes that had  been transformed into  functional  space.  We computed the  average 
time-series  activation across all the voxels in an ROI and using the correlation of this time series between  ROIs 
to  quantify  their  connectivity strength.   The  resulting  3,160 connectivity values  were stored  as  a  symmetric 
connectivity matrix;  the lower triangular matrix  (without diagonal  entries)  was used for all subsequent analysis. 
In many graph  theoretic analyses of networks,  a threshold  is applied  to filter or remove spurious  edges, but  here 
we chose to retain  the full network to understand how sensitive it was to the underlying  registration method  used. 

Our data  was derived for two types of twins:  monozygotic (MZ) twins, who share 100% of their genetic material, 
and  same-sex dizygotic  (DZ)  twins who share  on average  50%.  We computed the  intra-class correlation (ICC) 
in both  the MZ and DZ twins to quantify  cross-twin  correlations  in the functional  networks,  where connections 
that have a higher MZ ICC and lower DZ ICC point to a larger genetic influence on the brain  connectivity.10   In 
addition, we used structural equation  modeling  from classical genetics  to assess the  degree of the  variance  due 
to additive  genetics or heritability (A), shared  environmental (C),  and unique environmental (E) effects in each 
connection  in the network.11 
!
2.6   Evaluation of nonlinear registration methods 
Nonlinear  registration was assessed in three  ways: 

1.  Percent of ROI  overlap with gray  matter. To assess differences in the registration algorithms  based 
on the  ROI  overlap  with  gray  matter we used  a linear  mixed  effects model  that factored  in the  family 
membership  into the statistics comparing  each method.  In the model, family membership  was encoded as 
the random  effect, the percent of gray matter overlap in each ROI was used as the response, and a dummy 
variable  was used to represent two methods  being compared,  either  ANTs vs. ART,  ANTs vs. FNIRT, or 
ART  vs. FNIRT. 

!

2.  Number of  valid connections in  the  functional connectome across sub jects. We computed the 
percentage  of valid  connections  in the  functional  connectivity network  with  respect  to  the  total  number 
of possible connections  (3,160 edges for the  80 node network).  A valid  connection  required  two  ROIs  in 
the functional  space with > 0 voxels and located  in a part  of the image that included  activation data.  We 
averaged  the  percentage  of valid  connections  in each subject  across the  entire  set of subjects  used in the 
heritability analysis. 

!

3.  Heritability of  the   functional connectome.  We  compared  the  MZ ICC,  DZ ICC,  and  heritability 
values from the  ACE model computed over the  functional  connectivity networks.   We used paired-sample 
t-tests to compare  the distribution of these values between  methods  and averaged  across edges to summa- 
rize the results. 

3. RESULTS 
3.1   Structural tissue classification 
We show the percentage  of gray matter in 16 ROIs that are associated  with the default  mode network  in Figure 
2  across  three  registration methods.    All methods  perform  well for subcortical structures,  but  there  is large 
variation for cortical  regions.  Table 2 lists statistics comparing  the percentage  of gray matter in cortical  ROIs. 
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3.2   Functional connectome and  heritability 
The  percentage  of connections  that were valid across the  functional  connectome  was 94.3% computed from the 
ANTs transformed ROIs, while the number  dropped  to 90.4% for ART,  and 89.2% for FNIRT based approaches. 

We  show  the  results  from  the  MZ  ICC,  DZ  ICC,  and  heritability analysis  in  Figure 3;  Table  3  summa- 
rizes the average values across the connections  in the network.  As expected,  ANTs, ART, and FNIRT all showed 
higher  average  intra-class correlations  in MZ twins relative  to DZ twins.  ANTs  had  higher  average  heritability 
but not significantly different from ART, while ANTs and ART both had significantly higher average heritability, 
compared  to FNIRT. Hence, all registrations lead to a heritable functional  connectome  overall  but  on average 
the degree of heritability may differ in various  connections  dependent on the method. 

4. CONCLUSIONS 
!

We studied  registration algorithms  in the  context  of computing  functional  connectivity networks.   Our  assess- 
ment is more complex than  prior studies  that focus simply on the overlap of the two images being aligned in the 
nonlinear  registration step.  We were able to use both  structural and  functional  MRI to understand the  effects 
of ROIs during  registration and their  subsequent influence on functional  connectivity networks. 

We  found  distinct  differences  in  nonlinear  registration performance  based  on  ROI  placement  in  gray  matter 
and  the  percentage  of valid  connections  in functional  connectomes  derived  using  the  ROIs  as nodes.   Despite 
these differences, nonlinear  registration methods  did not have a large impact  on the functional  connectome  when 
we assessed the values using heritability analysis.  The lower resolution  of the functional  images may make them 
more robust  to errors in the higher resolution  ROI registration. 

Our findings could help in making  decisions when designing a robust  functional  connectivity pipeline. 

5. FIGURES AND TABLES 

Figure 1: Nonlinear registration applied to MNI152 ROIs. A representative T1-weighted  (T1w) structural 
MRI brain  scan overlaid  with  a gray  matter mask,  white  matter mask,  and  ROIs  (regions  of interest; random 
colors) that have been warped  from the MNI152 brain  template to a native  scan using ANTs. 
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Table 1: ROI  cog  Coordinates. List of left and right hemisphere  cog coordinates  for each ROI (determined by 
FSL–fslstats), which were used to create a standard set of spherical ROIs on the MNI152 brain template.  Because 
AFNI defaults  to RAI orientation, the sign of the X coordinates  listed were flipped to preserve  orientation. 

 

Region  of Interest (ROI) 
!

Left Hemisphere  cog 
Coordinates (X,Y,Z) 

Right Hemisphere cog 
Coordinates (X,Y,Z) 

Amygdala -22, -4, -18 25, -3, -19 
Bank  of the  Superior  Temporal Sulcus -63, -43, 8 48, -38, 8 

Caudal Anterior Cingulate -5, 17, 30 4, 22, 31 
Caudal Middle  Frontal -42, 17, 49 45, 15, 51 

Caudate -14, 5, 13 16, 8, 13 
Cuneus -1, -81, 19 4, -78, 19 

Entorhinal -17, -7, -34 21, -3, -35 
Frontal Pole -5, 67, -11 5, 67, -11 

Fusiform -35, -42, -23 37, -39, -24 
Hippocampus -24, -23, -13 27, -22, -13 

Inferior  Parietal -46, -70, 36 53, -62, 37 
Inferior  Temporal -51, -37, -25 52, -31, -25 

Insula -40, -2, 0 39, 1, -1 
Isthmus of the  Cingulate -4, -50, 19 6, -48, 18 

Lateral Occipital -37, -92, 0 41, -88, 0 
Lateral Orbitofrontal -24, 30, -17 24, 31, -18 

Lingual -8, -71, -8 14, -64, -8 
Medial  Orbitofrontal -2, 37, -20 3, 37, -20 

Middle  Temporal -67, -27, -12 68, -26, -13 
Pallidum -18, -4, 0 21, -3, 0 

Paracentral -3, -27, 60 7, -26, 57 
Parahippocampal -22, -31, -21 24, -31, -19 
Pars  Opercularis -57, 19, 14 59, 16, 13 

Pars  Orbitalis -48, 37, -15 45, 41, -18 
Pars  Triangularis -54, 33, 2 54, 36, 7 

Peri-calcarine -10, -79, 6 13, -76, 8 
Postcentral -57, -17, 42 62, -11, 40 

Posterior Cingulate -2, -20, 36 3, -20, 35 
Pre-central -56, -1, 42 58, -3, 42 
Precuneus -3, -58, 36 4, -55, 36 
Putamen -26, 1, 1 28, 3, 0 

Rostral Anterior Cingulate -5, 41, 3 4, 39, 2 
Rostral Middle  Frontal -37, 54, 19 41, 51, 21 

Superior  Frontal -12, 27, 58 14, 29, 57 
Superior  Parietal -21, -71, 60 18, -65, 63 

Superior  Temporal -64, -13, 0 66, -7, 0 
Supra-marginal -64, -36, 33 64, -27, 33 
Temporal Pole -26, 17, -37 28, 20, -37 

Thalamus -10, -17, 8 13, -16, 8 
Transverse Temporal -47, -17, 8 44, -18, 9 
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Figure  2: Percentage of gray  matter in transformed ROIs. Boxplots  for each of 16 ROIs associated  with 
the  default  mode  network  show the  relative  performance  of the  three  nonlinear  registration methods,  ANTs, 
ART,  and FNIRT. 

Table  2: Comparison of nonlinear registration methods for default mode network relevant cortical 
ROIs.  P-values  generated using  a  linear  mixed  effects model.   Bolded p-values  indicate  significance  while 
accounting  for multiple  comparisons  using the false discovery rate  (FDR)  method. 
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Region  of Interest (ROI) ANTs  vs.  ART ANTs  vs.  FNIRT ART  vs.  FNIRT 
Left Superior  Frontal 0.85 4.15E-33 4.63E-27 

Right Superior  Frontal 2.87E-21 9.57E-65 1.99E-23 
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Figure  3: Heritability of the  Functional Connectome. We present the results  from the functional  connec- 
tome  across the three  nonlinear  registration techniques  we used to spatially  normalize  the  ROIs  used as nodes 
in the  network.   MZ correlation represents the  intra-class correlation (ICC)  in the  monozygotic  twins,  DZ cor- 
relation  represents the ICC in the same-sex dizygotic twins, and the heritability column represents the additive 
genetic contribution to the variance  in each connection  in the network. 

Table  3:  Comparison of  Methods.  We  summarize  the  mean  across  all connections±SD  of the  intra-class 
correlation (ICC)  in the  monozygotic  (MZ) twins,  ICC of the  same-sex dizygotic  (DZ)  twins,  and  the  additive 
genetic contribution to connectivity variance.  ART  and ANTs did not differ significantly  in their  assessment of 
heritability across the entire  connectivity network. 
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Method MZ Correlation DZ Correlation Heritability 
ANTs 0.22±0.16 0.16±0.17 0.19±0.17 
ART 0.21±0.16 0.18±0.17 0.19±0.17 

FNIRT 0.22±0.15 0.15±0.18 0.17±0.17 
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ABSTRACT  

Sparse learning enables dimension reduction and efficient modeling of high dimensional signals and images, but it may 
need to be tailored to best suit specific applications and datasets. Here we used sparse learning to efficiently represent 
functional magnetic resonance imaging (fMRI) data from the human brain. We propose a novel embedded sparse 
representation (ESR), to identify the most consistent dictionary atoms across different brain datasets via an iterative 
group-wise dictionary optimization procedure. In this framework, we introduced additional criteria to make the learned 
dictionary atoms more consistent across different subjects. We successfully identified four common dictionary atoms 
that follow the external task stimuli with very high accuracy. After projecting the corresponding coefficient vectors back 
into the 3-D brain volume space, the spatial patterns are also consistent with traditional fMRI analysis results. Our 
framework reveals common features of brain activation in a population, as a new, efficient fMRI analysis method. 

Keywords: sparse learning, fMRI 

1. INTRODUCTION 
Sparse learning is widely used in image and signal processing and in biomedical and computational neuroscience, as a 
general and effective solution to represent high-dimensional features in low-dimensional space [1]. Recently, there has 
been increasing interest in applying sparse representation methods to analyze functional magnetic resonance images of 
the brain [2-3]. Unlike other applications which pursue a compact or abstract representation of the original data, sparse 
learning of fMRI signals has additional justifications from a neuroscience point of view: though the exact mechanism is 
largely unknown, the human brain is widely considered to include a collection of specialized functional networks that 
flexibly interact when different brain functions are performed [4]. In such a scenario, activity in a specific brain region 
might recruit different neuroanatomical regions/networks in a temporal sequence, and the same brain region may also 
participate in multiple functional processes under different internal and/or external circumstances [5]. In such a situation, 
the same brain region may be involved in multiple functional activities and as a result, a single fMRI signal also tends to 
be composed of various components corresponding to multiple functional sources, called functional networks. Sparse 
representation of fMRI signals naturally accounts for the neuroscience principle that each single fMRI time-series can be 
approximated  as  a  linear  combination  of  common  “blocks”,  which  are  so  called  dictionary atoms. And each dictionary 
atom also contributes to multiple fMRI signals simultaneously and the level of contribution is encoded in the coefficient 
matrix. 

 
Figure 1. Illustration of the framework. 
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Here we propose a novel embedded sparse representation (ESR) framework, in which we explore the most consistent 
and common dictionary atoms, across different subjects, via an iteratively group-wise dictionary optimization procedure. 
In our proposed framework, we introduce additional criteria to make the learned dictionary atoms more consistent across 
different subjects; we embed this additional optimization procedure into the sparse learning problem. The framework is 
summarized in Figure 1. The most encouraging part of the results is that, given no prior expectation, we were able to 
successfully identify four optimized dictionary atoms that closely followed the external task stimulus. Moreover, after 
projecting the corresponding coefficient vectors back to the 3-D brain volume space, the spatial patterns are also 
consistent with the traditional fMRI analysis results. These results suggest that the proposed framework may reveal 
common features of brain activation, offering a new and efficient fMRI analysis method. 

2. METHODS 
2.1 Framework overview 

We first define some notation to better illustrate the algorithms that follow: 
1. 𝐷௝: the dictionary of subject j;  
2. 𝑑௝,௠: the mth atom of the dictionary belonging to subject j;  
3. 𝐷௝,ி: the fixed dictionary for subject j, which only contains the fixed dictionary atoms; 
4. 𝑠௝௜: similarity. j and i are the indices of the subjects and dictionary atoms, respectively. 
5. N and K: the number of subjects and dictionary size. 
6. Corr (. , .): Pearson Correlation Coefficient. 
7. 𝑇௜: the ith template signal.  
 
In brief, the framework is composed of three sections. First, we perform stochastic coordinate coding [6] for each subject 
separately. The learned individual dictionary is then used for later exploration of the group-wise template signal. Then 
we  identify  a  template  signal  so  that  each  subject  has  at  least  one  dictionary  atom  that  is  “similar”  to  this  template  signal. 
Lastly, we fix this atom within the individual dictionary training and tune it towards the template signal, during each 
iteration of the ESR process. 
  

Overview of the framework 
1. Dictionary initialization: 

for j=1 to N do  
     𝐷௝  ← Stochastic Coordinate Coding (section 2.2) 
end for 

2. Embedded sparse representation via group-wise dictionary optimization 
for i=1 to K do  
      Explore template signal (𝑇௜) and initialize 𝐷ி  (Algorithm1 – section 2.3) 
            if  𝑇௜  is null do 
                  Terminate 
            end if 
      Optimize dictionary and update 𝐷ி  (Algorithm 2 – section 2.4) 
end for 

2.2 Stochastic coordinate coding  

Given a data set 𝑋 = (𝑥ଵ ⋯𝑥௡) of input signals, each signal is a p-dimensional vector, i.e., 𝑥௜ ∈ ℝ௣, 𝑖 = 1,…  , 𝑛. Our 
aim is to learn a dictionary and sparse codes (the coefficient matrix) from these input signals so that each input signal 
may be approximated by a linear combination of a small number of basis elements from the dictionary: 
 

min∑ 𝑓௜(𝐷, 𝑧௜) =௡
௜ୀଵ ∑ ଵ

ଶ
∥ 𝐷𝑧௜ − 𝑥௜ ∥ଶ+ 𝜆 ∥ 𝑧௜ ∥ଵ௡

௜ୀଵ     (1) 
 
𝜆 is the regularization parameter. Each 𝑧௜ is commonly called the sparse code. Here 𝐷   =    (𝑑ଵ ⋯  𝑑௠) ∈   ℝ௣×௠ is called 
the dictionary and each basis 𝑑௝ satisfies ∥ 𝑑௝ ∥  ≤ 1. In this paper, X is the whole brain fMRI signals (n is the number of 
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voxels).  D  is  the  set  of  common  “blocks”  that  can  represent  each  voxel’s  signals  by  their  linear  combinations.  Z  is  the  
coefficient matrix. An important characteristic of using sparse representation for fMRI signals is that the coefficient 
weight matrix (Z) naturally reveals the spatial patterns among those reconstructed brain networks [2, 3]. Here, we 
adopted stochastic coordinate coding (SCC) [6] to solve this ordinary sparse learning problem. 

2.3 Common dictionary component identification (Algorithm 1) 

Recent studies [3] suggest that some neuroscientifically meaningful dictionary atoms can always be achieved when the 
dictionary size lies within a reasonably wide range. In other words, some consistent dictionary atoms can be found across 
different   subjects,  even   if  each  person’s  data   is  subjected   to  sparse   learning separately. Inspired by this, we set out to 
explore and identify these common dictionary atoms. The core idea is that, for each subject, we calculate the consistency 
of its dictionary atoms with those belonging to other subjects. If we can find such a dictionary atom T, such that there 
exists at least one dictionary atom in all the other subjects that has a high correlation with T, then we call T a template 
signal candidate. After checking all the subjects, the dictionary atom possessing the maximal group-wise consistency 
(correlation) will be marked as a template signal. At the same time, those dictionary atoms that have the highest 
correlation with the template signal in other subjects (one atom for each subject) will be recorded for later dictionary 
initialization in algorithm 2.  

Algorithm 1 (Identify the i th common dictionary atom) 
1. For each subject as a center, calculate the maximum group-wise consistency: 

for j=1 to N do  
      𝑠௝௜ ← max(  ∑ max  (  𝑐𝑜𝑟𝑟(  𝑑௝,௠, 𝑑௟,௡  )  )௝,௠  ), where  1≤ l ≤N,  j  ≠  l,  i  ≤  m,  n  ≤  K,  corr ( . ,  .)  ≥  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑ு 
      and  corr  (  .  ,  T)  ≤  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑௅  
end for 

2. Find the center subject that has the maximum group-wise consistency: 
c = j, where 𝑠௖௜  = max(𝑠௝௜ ) 

3. Update 𝐷௝,ி:  
for j=1 to N do 
      𝐷௝,ி ← 𝑑௝,∗, where 𝑑௝,∗ contributes to 𝑠௖௜  
end for 

4. Update 𝑇௜ 
𝑇௜ ← 𝑑௖,∗ 

 
Note that we have two predefined thresholds in the above algorithm. 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑ு  is set as 0.5, which might be 
considered a fair indicator of moderately high correlation. 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑௅  is used for filtering those template candidates that 
have high correlations with the template signals identified previously. In this paper, we set Threshold௅ as 0; this means 
that the new template signal must be completely different from the previous ones. If we cannot find a template signal 
because of either the threshold constraint (𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑ு) or a conflict with the previous templates (𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑௅), then 𝑇௜ 
will be null and the whole process will be terminated. 

2.4 Dictionary optimization (Algorithm 2) 

The main objective of algorithm 2 is to force the identified dictionary atoms to change towards the corresponding 
template signal (identified in Algorithm 1) and to maintain precision, as far as possible. Specifically, we first generate an 
initial dictionary using random data and replace the first i atoms with the fixed ones achieved in the previous iterations. 
Then we move the 𝑖௧௛ atom with one step to make it more consistent with the template signal and deliver it to the SCC 
machine. The first i dictionary atoms would never be updated in the current sparse learning process. For example, when 
we optimize the second dictionary atom, we replace the first two atoms which were randomly generated with 𝐷௝,ி. 𝐷௝,ி 
includes two atoms: the first one comes from the previous optimization (Algorithm 2) and the second one is obtained 
from Algorithm 1, in this round. During each iteration of algorithm 2, we keep the first atom unchanged, adjust the 
second atom with ∆d, and update the other atoms as needed. Recall that before identifying common dictionary atoms, we 
have performed individual sparse learning with the same configuration (sparsity level and number of iterations) multiple 
times. Thus we acquire an estimate of the maximum residual (LASSO error) that we can tolerate, if some dictionary 
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atoms were fixed. In this paper, we perform SCC one hundred times for each subject and set the error Thresholdா as the 
mean plus the standard deviation derived from the multiple runs. 
 

Algorithm 2 (Dictionary optimization for the 𝑖௧௛ common atom) 
for j=1 to N do  
      ∆d  ← ( 𝑇௜- 𝑑௝,௜) / StepNum 
      do 
            generate 𝐷௝  with random data 
            𝐷௝  ← 𝐷௝,ி, 𝑑௝,௜ ← 𝑑௝,௜ +  ∆d     
            Sparse learning with fixed dictionary atoms  (𝑑௝,଴,  …,  𝑑௝,௜)  
      while residual ≤ Thresholdா  and 𝑑௝,௜ ≠  𝑇௜  
end for 

 

3. RESULTS 
3.1 Dataset and sparse learning parameters 

Our data source was the publicly available Human Connectome Project (HCP) Q1 release [7]. The HCP Q1 dataset has 
seven task-based fMRI datasets from 68 participants. In this paper, to illustrate the method on a specific problem, we 
randomly selected 10 subjects and focused on the motor task. More details of data acquisition and preprocessing may be 
found in [7].  

3.2 Common dictionary atom 

After applying the methods in section 2, we identified 4 template signals through Algorithm 1 and they were successfully 
optimized in algorithm 2. We listed the corresponding dictionary atoms before algorithm 1, after algorithm 1, and after 
algorithm  2  as  “Before”,  “Initial”  and  “Optimized”  in  Figure 2. The white curves represent the external stimuli. 
Different subjects are represented by different colors. 
 

 
Figure 2. Four consistent dictionary atoms we identified.  The  first  row  (“Before”)  shows  the signals at the same location 
among  different  subjects’  dictionaries.  The  second  (“Initial”)  and  third  row  (“Optimized”)  show  the  results  after  applying  
algorithm 1 and algorithm 2, respectively. The white curves represent the external stimuli (1st  and 2nd dictionary atom - 
tongue movement, 3rd dictionary atom - visual cue, 4th dictionary atom - left hand). 

 

Before performing algorithm 1, there are no correspondences among the dictionaries computed from multiple subjects. 
Even   though  there  are  some  consistent  patterns   in  different  subjects’  dictionaries,  we  do  not  know  what   these  patterns  
look like and where those atoms are located. Hence the signals in the same location display a random pattern (the rows 
marked  with  “Before”).  In  algorithm 1, the pattern with the maximum group-wise similarity was explored during each 
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iteration and the identified dictionary atom in each subject was assigned to the same location in the individual dictionary. 
The  rows  marked  with  “Initial”  show  the  results  after  algorithm 1. As we can clearly see, there are still variations among 
different dictionary atoms, but the overall pattern is evident. Lastly, the algorithm 2 iteratively optimized the above 
dictionary atoms and made them as similar as possible, until they are the same as the template signal or the residual 
exceeds   the   threshold.   The   optimized   results   are   shown   in   the   rows   marked   with   “Optimized”.   The   corresponding 
dictionary  atoms  among  different  subjects  are  more  “similar”,  compared  to  the  “Initial”  ones.  The  changes  in  consistency  
(correlation) at each iteration during the dictionary optimization are shown in Figure 3.  As the maximum iteration 
number is seven when optimizing the first dictionary atom, there are only seven statistic values in the first subfigure in 
Figure 3.   

The  most  interesting  finding  is  that,  after  exploration  and  optimization  of  the  consistent  dictionary  atoms,  the  four  
consistent  patterns  identified  can  be  perfectly  matched  with  the  external  stimuli  curves.  In  Figure  2,  the  first  and  
second   optimized   dictionary   atoms   correspond   to   the   tongue  movement   stimulus.   Specifically,   the   first   atom   is  
positively  correlated  with   the  stimulus;;  however,   the  second  atom  is  anti-correlated  with   the   same  stimulus.  The  
third  and  fourth  atoms  are  consistent  with  the  stimuli  of  visual  cue  and  left  hand.  Recall  that  we  did  not  enforce  or  
provide   any   prior   knowledge   of   the   task   stimuli,   and   these   stimuli-related   dictionary   atoms   are   automatically  
learned  from  the  original  fMRI  data.   

 

 
Figure 3. The improvement in consistency during the optimization in algorithm 2. 

 

3.3 Spatial patterns in the identified common dictionary atoms 

In the previous section, we displayed four consistent dictionary atoms after our optimization, which perfectly follow (or 
are anti-correlated with) the external stimuli. One natural question arises: Are their spatial patterns also similar to the 
activation map derived from traditional methods, such as the general linear model (GLM)? To answer this question, we 
show the spatial patterns (by projecting the corresponding coefficient vectors back to the 3D brain volume space) of 
these four dictionary atoms in Figure 4. We showed both results derived from our method (ESR) and GLM of ten 
subjects (each row). The GLM results of these four atoms correspond to tongue, anti-tongue (opposite of the tongue 
movement stimulus), visual cue and left hand. From visual examination, the spatial patterns from our method are 
visually similar to those activation maps detected by GLM. To quantitatively measure their similarity, we calculated the 
overlap  rate  (  (ESR  ∩  GLM)/(ESR  U  GLM)  );;  results  are  shown  in  Table 1. 
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Figure 4. The corresponding spatial patterns of the identified four dictionary atoms. 

Both results indicate two encouraging findings: 1) there are some common and stable dictionary atoms that exist across 
different subjects, even though the sparse learning algorithm is performed individually; 2) for those common dictionary 
atoms, their temporal patterns tend to follow some external stimuli, and most of their spatial patterns display an obvious 
similarity to the results derived from a traditional activation detection method (i.e., the GLM). However, we also noticed 
some inconsistent cases. For example, the 2nd atom displayed a more arbitrary pattern both in ESR and GLM. One 
possible explanation is that unlike the situations under external stimuli, the functional interactions  under  the  “anti-task”  
are much more complicated. Another possible reason is that the dictionary size might be too large for this dataset. Some 
latent  patterns,  such  as   the  Default  Mode  Network  (DMN)  which   is  known  as  an  “anti-task”   feature  when  performing 
task, could be over-decomposed into multiple components. This is worth investigating in future work.  

 

Table 1.  Overlap  rate  between  ESR  and  GLM.  “Sub“  means  subject,  numbered  1  to  10. 

% Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9 Sub10 
1st  18.2 16.7 22.6 25.0 23.9 25.9 18.1 28.9 28.7 23.4 
2nd 16.5 13.4 14.0 14.1 25.4 16.4 16.0 24.2 14.0 21.8 
3rd 22.0 20.9 31.9 20.5 28.2 29.0 22.1 21.9 37.6 23.0 
4th 22.9 21.2 18.9 26.9 22.8 24.6 18.4 24.9 32.2 25.3 
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4. CONCLUSIONS 
In this paper, we proposed a novel embedded sparse representation framework, in which we aimed to explore the most 
common and consistent dictionary atoms across different subjects. To do this, we used an iterative group-wise dictionary 
optimization procedure. Figure 2 illustrates that, given no prior expectation or prior, we can successfully learn multiple 
common dictionary atoms based on ordinary sparse learning results and the learned template signals (dictionary atoms) 
perfectly match the external stimuli. In addition, the corresponding spatial patterns are also consistent with prevailing 
neuroscience knowledge. 
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Abstract: Echo-planar imaging (EPI) is commonly used for diffusion-weighted imaging (DWI) but is 
susceptible to nonlinear geometric distortions arising from inhomogeneities in the static magnetic field. 
These inhomogeneities can be measured and corrected using a fieldmap image acquired during the 
scanning process. In studies where the fieldmap image is not collected, these distortions can be corrected, 
to some extent, by nonlinearly registering the diffusion image to a corresponding anatomical image, either 
a T1- or T2-weighted image. Here we compared two EPI distortion correction pipelines, both based on 
nonlinear registration, which were optimized for the particular weighting of the structural image 
registration target. The first pipeline used a 3D nonlinear registration to a T1-weighted target, while the 
second pipeline used a 1D nonlinear registration to a T2-weighted target. We assessed each pipeline in its 
ability to characterize high-level measures of brain connectivity in Parkinson’s disease (PD) in 189 
individuals (58 healthy controls, 131 people with PD) from the Parkinson’s Progression Markers 
Initiative (PPMI) dataset. We computed a structural connectome (connectivity map) for each participant 
using regions of interest from a cortical parcellation combined with DWI-based whole-brain tractography. 
We evaluated test-retest reliability of the connectome for each EPI distortion correction pipeline using a 
second diffusion scan acquired directly after the participants’ first. Finally, we used support vector 
machine (SVM) classification to assess how accurately each pipeline classified PD versus healthy 
controls using each participants’ structural connectome. 

 
Keywords: diffusion-weighted imaging, echo planar imaging, non-linear registration 

 
 
1. Introduction 

 
Diffusion-weighted imaging (DWI) – a form of magnetic resonance imaging (MRI) – has grown in 
popularity as it enables detailed study of white matter microstructural abnormalities and connectivity 
patterns that are undetected in standard anatomical MRI images. Echo-planar imaging (EPI) is typically 
used for DWI, to generate high signal-to-noise images with a fast acquisition time. As EPI assumes a 
homogeneous static magnetic field that is hard to actually achieve in a typical brain MRI, it is susceptible 
to EPI distortions – nonlinear geometric distortions arising from inhomogeneities in the static magnetic 
field – primarily around air-tissue interfaces such as the sphenoid, ethmoid and frontal sinuses. Typically, 
the phase-encoding direction lies along 1 dimension of the image, usually the coronal axis (y-axis), and 
thus as do the distortions. Here we aimed to study how the choice of EPI distortion correction pipelines 
affects the resulting structural connectome in the study of Parkinson's disease. We build on prior work by 
using two statistical techniques to compare three image-based correction approaches: (1) a widely used 
3D inverse-consistent mutual information elastic registration (3DMI) to a T1-weighted target; (2) a 
single-plane warp to nonlinearly register images to a T2-weighted image in the phase-encoding direction 
only (PDEC) (Tao, 2009) that was developed specifically for EPI correction; and (3) a “no correction” 
technique designed as a baseline group (nEC), for comparison. We hypothesized that PDEC would 
perform better than both the 3DMI and nEC groups because PDEC addresses to the physical sources of 
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EPI distortion. If the phase-encoding direction is the only dimension affected by EPI distortions, then 
warping only that direction should be sufficient to correct the image, avoiding unnecessary or incorrect 
warps of the diffusion image in other dimensions. We assessed connectivity networks from each approach 
(3DMI vs. PDEC vs. nEC) using intra-class correlation and support vector machines (SVMs) that 
classified healthy controls and Parkinson’s disease (PD) patients in a dataset of 189 participants. Many 
prior studies have assessed the registration performance of EPI distortion correction techniques, but here 
we investigated whether effects of these different methods of correction might propagate to higher-level 
measures such as brain connectivity and classifications based on connectivity networks. 

 
 

2. Methods 
 
2.1 Participants & Brain Imaging 

 
 

 
 

We analyzed data from 189 participants scanned as part of the Parkinson’s Progression Markers Initiative 
(PPMI), including 58 healthy controls and 131 patients with Parkinson’s disease (PD). Table 1 above has 
a breakdown of our participant demographics. All participants received whole-brain 3-Tesla MRI image 
scans on Siemens scanners. For each subject, one high-resolution T1-weighted 3D magnetization 
prepared rapid gradient echo, or MP-RAGE scan (256x240x176 matrix; voxel size = 1.0x1.0x1.0 mm3; 
TR = 2300 ms; TI = 900 ms; TE = 2.98 ms; flip angle = 9°), one non-contrast enhanced T2-weighted 
image, and two identical diffusion MRI sequences (116x116x72 matrix; voxel size = 2.0x2.0x2.0 mm3; 
TR = 900 ms; TE = 88 ms) were acquired in the same session. For both diffusion MRI scans, 65 gradient 
directions were acquired: 1 T2-weighted image with no diffusion sensitization (b0 image) and 64 
diffusion-weighted images (b = 1000 s/mm2). 

 
2.2 DWI preprocessing & EPI Distortion Correction Techniques 

 
Both DWIs acquired per subject, which we will refer to as DWI_1 and DWI_2, were pre-processed 
identically. To increase signal to noise ratio (SNR), images were first de-noised using local principal 
component analysis (Manjon, 2013). Each image was then corrected for eddy current distortions using the 
FMRIB Software Library (FSL) (Jenkinson, 2012). Using the b0 as a reference volume, each of the 
gradient directions were then rotated, or affinely registered using FSL’s Linear Image Registration Tool 
(FLIRT) algorithm to accommodate this correction. Brains were then “skull-stripped” using FSL’s Brain 
Extraction Tool (BET) and underwent voxel-wise diffusion tensor modeling using FSL’s DTIFIT 
algorithm. At this point, the DWI’s for both DWI_1 and DWI_2 both underwent each EPI distortion 
correction pipeline separately. After EPI correction we had six total groupings of images; DWI_1: nEC, 
3DMI, PDEC and DWI_2: nEC, 3DMI, PDEC. 
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2.2a General Elastic Registration for EPI Correction (The “3DMI” Technique) 

 
For the first EPI correction technique, we used a 3D inverse-consistent mutual information elastic 
registration algorithm, referred to as 3DMI, to correct for the EPI susceptibility artifacts. T1-weighted 
images were first affinely transformed to the standard 1mm3 MNI atlas using FSL’s FLIRT (degrees of 
freedom [dof] = 6, cost = correlation ratio; interpolation = trilinear). We then affinely registered each 
participant’s DWI_1 and DWI_2 to his or her T1-weighted image in MNI coordinate space (dof = 12; 
cost = correlation ratio; interpolation = trilinear). 3DMI was then applied to register and warp the affinely 
registered DWI_1 and DWI_2 to its corresponding T1-weighted image. Assuming the T1-weighted image 
is undistorted and that the registration is accurate, this alignment of the DWI to the T1 should correct for 
the EPI distortions. 
 
 
2.2b Custom Variational Image-Based Elastic Registration for EPI Correction (The “PDEC” 
Technique) 

 
Separately, all DWI_1 and DWI_2 scans that had been affinely alighned to their T1 were then corrected 
for EPI distortions using a previously described elastic registration method restricted to the y-phase 
direction of the scan, which we refer to as Phase Encoding Direction EPI Correction or PDEC. PDEC 
nonlinearly registers a diffusion image – the image with EPI distortions – to its corresponding T2-
weighted image, to account for the EPI susceptibility artifacts. In theory, true EPI distortion exists solely 
in the phase-encoding direction, denoted by ‘y’ below. Thus, PDEC ideally should correct the EPI 
distortions more accurately. The technique registers the b0 image to its corresponding T2-weighted 
structural image using a squared-error penalty as detailed in the equation below, where IE represents the 
EPI image and the second part of the equation is an elastic penalty on the displacement ‘v’. The method 
includes a correction for the conservation of the EPI signal and is solved using gradient descent. 

 
 

 
 

We skull-stripped and affinely registered the T2-weighted images to their corresponding DWI in native 
diffusion space with FLIRT (dof = 6; cost = correlation ratio; interpolation = trilinear). We then 
performed PDEC to nonlinearly warp each DWI_1 and DWI_2 to its corresponding T2-weighted image 
along the phase-encoding direction only (for these data, the anterior-posterior plane, also denoted as the 
‘y’ plane). 

 
Images post-PDEC were affinely aligned to standard 1 mm3 MNI coordinate space by first affinely 
aligning the T2-weighted image to the subject’s corresponding T1-weighted image in MNI space with 
FLIRT (dof = 12; cost = correlation ratio; interpolation = trilinear) to normalize each subjects’ images. 
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This transformation was then applied to each DWI_1 and DWI_2 image to upsample them to standard 
MNI coordinates. 
 
2.2c Baseline Pipeline with No EPI Correction 

 
A “no correction” group (nEC) was included as a control method as to set a baseline comparison for the 
two distinct EPI correction pipelines. Only a single affine transformation using FSL FLIRT was used on 
the preprocessed DWIs to the subject’s corresponding T1-weighted image in the MNI coordinate space 
(dof = 12; cost = correlation ratio; interpolation = trilinear). Figure 2 illustrates the three pipelines 
described above. 

 
 
 

 
 
2.3 Cortical Measurements 

 
Each subject’s T1-weighted MRI scan was processed using FreeSurfer version 5.3 
(http://surfer.nmr.mgh.harvard.edu/). 34 cortical gray matter labels, defined by the Desikan-Killiany atlas (Desikan, 
2006), were extracted for each hemisphere (68 labels in total). Using nearest neighbor interpolation, we affinely 
aligned the labels from the T1 native space to the standard 1-mm3 MNI space by applying the same transformation 
used on the subject’s T1-weighted image when it was aligned to MNI space. This allowed the diffusion images and 
the cortical parcellations to be aligned for the computation of the subjects’ connectomes. 
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2.4 Tractography and Structural Connectivity Networks 
 

For each comparison group, whole-brain tractography was combined with the FreeSurfer-generated cortical labels to 
map each subject’s cortical connectivity. First, we computed tractography using the EPI corrected, MNI aligned 
DWI_1 and DWI_2 images using Constant Solid Angle Orientation Density Function (CSA-ODF’s) (Aganj, 2010) 
generated from an optimized global tractography algorithm (Aganj, 2011; Prasad, 2013) with 10,000 fibers. From 
this, we constructed connectivity networks by computing the number of fibers intersecting pairs of the 68 cortical 
regions of interest (ROIs) from the FreeSurfer parcellation. The number of fibers between a pair of ROIs quantified 
the connectivity between each of the 68 regions. We normalized this value by the total number of fibers extracted 
per brain and arranged them into a symmetric 68x68 connectivity matrix with 34 ROIs in both the right and left 
hemispheres. 
 
2.5 Intraclass Correlation Coefficient 

 
The intraclass correlation coefficient (ICC) (McGraw, 1996) is a reliability index that can quantify the consistency 
or reproducibility of measurements. We used ICC (3, 1)=(BMS-EMS)/(BMS+EMS), where BMS is the between-
targets mean square and EMS is the residual mean squares. This ICC variant assumes each target (participant) is 
rated by a fixed set of 2 judges (in this case, DWI_1 and DWI_2). We computed ICC (3, 1) at every edge that was 
assigned a positive weight across the dataset in the 68x68 connectivity networks (described above). We then used 
paired-sample Student’s t-tests to compare this distribution of ICC values at each edge, across the three EPI 
correction techniques. 
 
2.6 Cross-Validated Support Vector Machine Classification 

 
We used linear kernel support vector machines (SVMs) (Cortes, 1995) to classify participants as either a healthy 
control or a patient with PD. SVM learns a hyperplane in the d=(68/2)=2278 dimensional connectivity network 
space. This hyperplane is optimized to separate the two classes that exist in the data. We set the penalty parameter C, 
that controls the number of support vectors or observations used in the hyperplane, to a default value of 1.0. This has 
been shown to be robust across a wide variety of datasets (Pedregosa, 2011). Because the class sizes in our dataset 
differed, we used balanced accuracy (Brodersen, 2010) to quantify classification performance instead of typical 
accuracy that may not correctly assess the performance on the smaller class. Balanced accuracy is the mean of 
sensitivity and specificity and equally weights the accuracy on each class. For all three EPI correction techniques 
and for each subject, we used 10-times repeated 10-fold cross-validation (Kohavi, 1995) to assess classification 
accuracy across correction methods. 
 
 
3. Results 

 
The ICC analysis in Table 2 contrasts the mean of the test-retest statistic for all three processing pipelines. The 
PDEC method consistently held the highest ICC in all groups and was significantly higher (p-value < 0.05) than 
3DMI in all cases. A higher ICC in the PDEC group shows higher consistency in the EPI correction and aligning of 
the DWI to the T2-weighted image. Even so, PDEC was marginally different (p~0.05) from nEC in only the control 
group. 

 
In Table 3, we list the balanced accuracy results from the cross-validated SVM classifier of the control group vs. PD 
in both DWI_1 and DWI_2. 3DMI consistently showed significantly higher accuracy (comparing accuracy across 
the ten repeated measures) compared to both nEC and PDEC. In the DWI_1 dataset, PDEC ranked second in 
performance and performed better (significant when correcting for multiple comparisons) than nEC. 
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4. Conclusions 

 
Though EPI distortion algorithms have been studied through standard registration metrics, here we study how EPI 
distortion correction affects brain connectivity measures in the analysis of Parkinson’s disease, specifically 
connectomics. Errors induced from pre-processing issues can be propagated to higher-level derived measures of 
brain connectivity, and classifiers based on those measures, which we assess here for the first time. 

 
The DWI_1 and DWI_2 images in the PDEC group had higher ICC values, compared to those in the 3DMI and nEC 
groups. PDEC may provide a more consistent, but not necessarily more accurate, EPI correction based on these test-
retest metrics. 

 
In terms of disease classification, images that were EPI corrected using 3DMI had better classification accuracy than 
those corrected using PDEC and nEC. 3DMI uses nonlinear warps in three planes rather than only in the phase-
encoding direction, and this may influence classification accuracy. It is possible, that the 3D nonlinear alignment of 
the DWI to the T1 provides a higher accuracy in terms of matching the intricate gyral patterns of the cortex, which is 
of utmost importance when computing the structural connectomes. The nature of the structural connectomes is 
multimodal, where discrete cortical regions are segmented from T1-weighted images and tractographies are 
reconstructed from DWI images. Hence, a better alignment of both image modalities is critical to resolve the 
intersection of each cortical region with the right reconstructed fiber/streamline. Our results also suggest that the 
anatomical correctness of the alignment is likely more important in terms of computing structural connectomes 
suitable for classification purposes, than an accurate correction of the diffusion gradient directions accounting for 
3D non-linear deformation fields. 
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