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Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late 
life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 
adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were 
also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height.  
We found a high genetic correlation with child head circumference (genetic = 0.748), which indicates a similar genetic 
background and allowed us to identify four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial 
volume were also related to childhood and adult cognitive function, and Parkinson’s disease, and were enriched near genes 
involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial 
volume and provide genetic support for theories on brain reserve and brain overgrowth.
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The intricate genetic control of the human brain, complemented by 
environmental factors, leads to the observed variations in brain size 
in human populations1. Intracranial volume is closely related to brain 
volume in early life as the brain grows2,3. However, it becomes stable 
after the brain has fully developed and remains unaffected by later 
age-related changes such as brain atrophy4,5, thereby representing 
the maximal attained brain size. Discovering genetic variants that 
influence intracranial volume can contribute to our understanding 
of brain development and related diseases, but prior studies have only 
identified two influential genetic loci6–9.

We carried out genome-wide association studies (GWAS) in popu-
lations from the Cohorts for Heart and Aging Research in Genomic 
Epidemiology (CHARGE)10 and Enhancing NeuroImaging Genetics 
through Meta-Analysis (ENIGMA)11 consortia on intracranial volume,  
as measured by magnetic resonance imaging. Genotypes were imputed 
to the 1000 Genomes reference panel (phase 1, version 3). Meta-analysis  
revealed five previously unknown loci associated with intracranial 
volume. We also discovered genome-wide overlap between intracra-
nial volume and other key traits, including height, cognitive ability 
and Parkinson’s disease. Furthermore, we found relatively enriched 
patterns of association for certain functional categories of variants 
and near genes that were involved in specific pathways.

RESULTS
GWAS
Detailed information on the population characteristics, image acqui-
sition and processing, and genetic quality control can be found in the 
Online Methods and Supplementary Tables 1–3.

The discovery meta-analysis (N = 26,577) yielded seven genome-wide 
significant (P < 5 × 10−8) loci, five of which were previously unknown 
(Figs. 1 and 2, and Table 1). The quantile-quantile plot showed infla-
tion (λ = 1.092; Supplementary Fig. 1), which we determined to 
be mainly a result of polygenicity rather than cryptic relatedness  

or population stratification using LD


 score regression12. Next we ana-

lyzed European samples (N = 2,362; not included in the discovery 
sample) and generalization samples with African (N = 938), Asian 
(N = 955) and Hispanic (N = 1,605) ancestries (Table 1). All variants 
had the same direction of effect in the additional European samples


  

(sign test, P = 0.0078), and three variants replicated, at nominal  
significance. Although sample sizes were generally small for the  
non-Europeans, here too, the direction of effect was generally con-
cordant with the discovery (sign test, P = 0.039). We detected five 
nominally significant associations across all three ethnicities.

Next we mapped the association to new variants for two previously 
identified loci at chromosome 17q21 (rs199525; P = 3.8 × 10−21) and 6q22 
(rs11759026; P = 2.2 × 10−20)6,7. The five loci were located on chr 6q21 
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Figure 1 Common genetic variants associated with intracranial volume. 
Manhattan plot in which every point represents a single genetic variant 
plotted according to its genomic position (x axis) and its −log10(P ) 
for association with intracranial volume (y axis). Variants in blue were 
genome-wide significant in a previously known locus, whereas red variants 
reached genome-wide significant for the first time in that locus. The 
dashed horizontal line represents a significance threshold of P < 10−6 and 
the solid horizontal line represents genome-wide significance of P < 5 × 10−8.  
Variants surpassing these thresholds are indicated by larger points.
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Figure 2 Regional association and functional annotation of previously unknown genome-wide significant loci. Regional association plots for the five 
genome-wide significant loci of intracranial volume with gene models below (GENCODE version 19). Annotation tracks below from the Roadmap 
Epigenomics Consortium46 highlight the genomic region that likely harbors the causal variant(s) (r2 > 0.8 from the top SNP). See Online Methods for 
detailed track information.




 Plots were generated using the LocusTrack software (http://gump.qimr.edu.au/general/gabrieC/LocusTrack/).Q15Q15



nature neurOSCIenCe  advance online publication �

a r t I C l e S

(rs2022464; P = 3.7 × 10−11), chr 10q24 (rs11191683; P = 1.1 × 10−10),  
chr 3q28 (rs9811910; P = 2.0 × 10−9), chr 12q14 (rs138074335/ 
rs7312464; P = 6.2 × 10−9) and chr 12q23 (rs2195243; P = 1.5 × 10−8). 
Functional annotation of the variants and those in LD (r2 >0.8) can 
be found in Supplementary Table 4.

Height-adjusted analyses
Four of the seven loci for intracranial volume have previously been 
discovered for height (17q21, 6q22, 6q21 and 12q14), prompting us 
to investigate genome-wide overlap between the two traits. Given 
that height and intracranial volume are correlated (weighted average 
Pearson’s r = 0.556; Supplementary Table 5), and the possibility that 
this could drive association signals, we performed a GWAS of intrac-
ranial volume adjusted for height in the studies that had measured 
height (N = 21,875). Findings were compared to the corresponding 
subset of studies without adjustment (N = 22,378). Using LD score 
regression (Online Methods), we found that there was considerable 
genetic correlation between intracranial volume and height (ρgenetic =  
0.241, P = 2.4 × 10−10), which disappeared after adjusting for height 
(ρgenetic = 0.049, P = 0.21) (Table 2). The associations of the seven 
intracranial volume loci, however, remained significant after adjust-
ing for height (Supplementary Table 6). To investigate whether more 
height loci were associated with intracranial volume independently 

of height, we analyzed all 697 genome-wide significant height vari-
ants13. An additional 73 variants (10.7%; 14 variants not available) 
showed nominally significant associations with intracranial volume, 
but were not attenuated after adjustment for height, although none 
survived Bonferroni correction (Supplementary Table 7). For some 
variants, the direction of effect was discordant, that is, positive for 
height and negative for intracranial volume. Furthermore, a polygenic 
score of the 697 variants predicted intracranial volume, and this was 
also the case after adjustment for height in a subset of the studies 
(Supplementary Table 8).

Genetic correlation
In addition to height, we examined the genome-wide genetic overlap 
between intracranial volume and other anthropometric traits, cogni-
tive function, and neurodegenerative diseases (Table 2). We found a 
strong genetic correlation with child head circumference (ρgenetic =  
0.748), which validates intracranial volume as a measure of brain 
growth during early development. Given that this high correlation 
indicates that the genetic determinants of intracranial volume and 
child head circumference are largely shared, we aimed to leverage 
this information by performing a meta-analysis of both traits. The 
meta-analysis (combined N = 37,345) led to the identification of four 
previously unknown loci (Fig. 3 and Supplementary Table 9).

Table 2  Genetic correlation between intracranial volume and other anthropometric traits, cognitive function, and neurodegenerative  
diseases.

Intracranial volume,
full sample (N = 26,577)

Intracranial volume,
height subset (N = 22,378)

Intracranial volume,
height adjusted (N = 21,875)

Phenotype N total N cases ρgenetic SE P ρgenetic SE P ρgenetic SE P

Anthropometric traits
 Adult height 253,280 – 0.249 0.037 1.4 × 10−11 0.241 0.038 2.4 × 10−10 0.049 0.039 0.21
 Child head circumference 10,768 – 0.748 0.121 5.5 × 10−10 0.758 0.124 1.1 × 10−9 0.750 0.126 2.5 × 10−9

 Birth length 28,459 – 0.296 0.087 6.7 × 10−4 0.278 0.087 1.3 × 10−3 0.192 0.088 0.029
 Birth weight 26,836 – 0.285 0.081 4.4 × 10−4 0.219 0.082 7.9 × 10−3 0.160 0.086 0.062
Neurological traits
 Childhood cognitive function 12,441 – 0.277 0.090 2.2 × 10−3 0.277 0.091 2.5 × 10−3 0.257 0.090 4.2 × 10−3

 Adult cognitive function 53,949 – 0.202 0.059 6.3 × 10−4 0.205 0.060 6.0 × 10−4 0.198 0.059 6.9 × 10−4

 Alzheimer’s Disease 54,162 17,008 –0.070 0.097 0.47 –0.049 0.097 0.61 –0.043 0.098 0.66
 Parkinson’s Disease 108,990 13,708 0.315 0.063 6.6 × 10−7 0.316 0.070 5.5 × 10−6 0.335 0.072 3.0 × 10−6

 White matter lesions 17,936 – 0.112 0.075 0.13 0.111 0.078 0.16 0.096 0.079 0.23
Psychiatric traits
 Autism 10,263  4,949 –0.011 0.069 0.87 –0.036 0.074 0.63 0.026 0.071 0.72
 Bipolar disorder 11,810  6,990 0.070 0.071 0.33 0.007 0.075 0.93 –0.004 0.076 0.95
 Major depressive disorder 16,610  9,227 0.002 0.100 0.98 0.025 0.098 0.80 0.005 0.096 0.96
 Schizophrenia 17,115  9,379 0.054 0.056 0.33 0.017 0.058 0.77 –0.009 0.058 0.87
 Extraversion 63,030 – –0.041 0.092 0.65 –0.101 0.095 0.29 –0.097 0.092 0.29
 Neuroticism 63,661 – –0.017 0.109 0.87 0.035 0.106 0.74 0.070 0.111 0.53

Genetic correlation between various phenotypes and intracranial volume in the complete discovery sample (full sample), adjusted for height in the studies that 
measured height (height adjusted) and the corresponding subset of studies without adjustment (height subset).

Table 1 Association of genome-wide significant loci for intracranial volume in European, African, Asian and Hispanic populations.
European  
discovery  

(N = 26,577)

European  
replication  

(N = 2,363)

African 
generalization  

(N = 938)

Asian 
generalization  

(N = 955)

Hispanic 
generalization  
(N = 1,605)

Genetic variant Locus Position A1 A2 Freq β P β P β P β P β P

rs199525 17q21 44847834 T G 0.80 0.102 3.8 × 10−21 0.024 0.407 0.358 1.3 × 10−3 0.264 0.406 0.035 0.493
rs11759026 6q22 126792095 A G 0.76 –0.095 2.2 × 10−20 –0.019 0.528 –0.131 0.194 –0.071 0.123 –0.046 0.209
rs2022464 6q21 108945370 A C 0.30 –0.063 3.7 × 10−11 –0.090 4.7 × 10−3 –0.060 0.233 –0.105 0.035 –0.088 0.013
rs11191683 10q24 105170649 T G 0.33 0.059 1.1 × 10−10 0.040 0.174 0.187 0.021 0.085 0.075 –0.005 0.911
rs9811910 3q28 190670902 C G 0.08 0.096 1.2 × 10−9 0.075 0.010 0.346 0.020 0.101 0.621 –0.148 0.187
rs138074335 12q14 66374247 A G 0.59 0.051 6.2 × 10−9 0.106 2.9 × 10−4 –0.016 0.735 –0.004 0.951 0.001 0.984
rs2195243 12q23 102922986 C G 0.22 –0.059 1.5 × 10−8 –0.044 0.132 0.037 0.585 –0.020 0.774 –0.093 0.101

A1, effect allele; A2, reference allele; Freq, frequency of the effect allele; N, sample size.
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Weaker correlations were found with birth length and weight 
(ρgenetic < 0.3), which attenuated after adjusting for height. In addi-
tion, intracranial volume was genetically correlated with cognitive 
function in childhood (ρgenetic = 0.277, P = 2.2 × 10−3), as well as 
general cognitive function in middle-aged and older adults (ρgenetic =  
0.202, P = 6.3 × 10−4). Furthermore, we found a positive genetic  
correlation with Parkinson’s disease (ρgenetic = 0.315, P = 6.6 × 10−7), 
but there was no significant genetic overlap with Alzheimer’s disease, 
white matter lesions and psychiatric traits.

Enrichment analyses
Next, we assessed whether particular subsets of genetic variants 
were enriched for association with intracranial volume using parti-
tioned heritability and pathway analyses (Online Methods). Overall, 
we found that common variants genotyped from across the whole 
genome explained 25.42% (s.e.m., 2.73%) of the variation in intrac-
ranial volume. Partitioning heritability by chromosome revealed that 
chromosome 22 contributed twofold more to variation in intracranial 
volume than would be expected by its size 


(Fig. 4a), which was not 

seen for any of the other complex traits from the genetic correlation 
analysis (Supplementary Fig. 2). Partitioning by functional elements 
showed an enrichment for introns and several histone codes that are 
found in actively transcribed promoters (Fig. 4b). The enrichment 
for intronic variants was specific to intracranial volume, whereas the 
other functional classes were also enriched in other complex traits 
(Supplementary Fig. 3). We also found that loci associated with 
intracranial volume cluster around genes involved in specific pathways,  
with 94 pathways being significantly enriched (Fig. 4c; full list in 
Supplementary Table 10). These pathways included all of the cell 
cycle components—the M, G1, S and G2 phases—and various growth 
factor signaling pathways, including PI3K-AKT.

Head growth trajectories
Although intracranial volume reflects brain development until matu-
ration, and we identified influences of many growth-related proc-
esses contributing to its variation, all of the loci were still discovered 
via cross-sectional associations in adults. Thus, we tested whether 

Q16Q16

a polygenic score of the seven loci could predict head growth in a 
longitudinal cohort of 2,824 children of European ancestry followed 
prenatally until 6 years of age (Online Methods). We found that a 
higher polygenic score, representing a genetically larger intracranial 
volume in adults, was also associated with a larger child head cir-
cumference (β = 0.031 per SD,


 P = 0.010). Furthermore, the effect of 

the polygenic score was age dependent and more prominent in older 
children (β = 0.0080 per s.d. polygenic score per year age, Pinteraction =  
0.0091). When investigating the individual loci separately, we found 
significant associations between both 17q21 and 12q14 and child  
head circumference, but they influenced the trajectories of head 
growth differently (Fig. 4a,b). For 17q21, the negative effect of the 
G allele on head circumference became apparent postnatally and 
increased toward 6 years of age, whereas the 12q14 locus exerted an 
effect from early pregnancy to 1 year of age, but was less prominent 
later in life. 

DISCUSSION
Genes contributing to variation in the size of the human brain remain 
challenging to discover. In a worldwide project of unprecedented scale, 
we performed the largest-ever meta-analysis of GWAS of intracranial 
volume. We discovered five previously unknown genetic loci asso-
ciated with intracranial volume, and replicated two known signals. 
The discovery sample included Europeans only, but the direction of 
effect was similar in other ethnicities. The genes in these loci provide 
intriguing links between maximal brain size and various processes, 
including neural stem cell proliferation (FOXO3), neurodegeneration 
(MAPT), bone mineralization (CENPW), growth signaling (IGF1, 
HMGA2), DNA replication (GMNC) and rRNA maturation (PDCD). 
On a genome-wide scale, we discovered evidence of genetic correla-
tion between intracranial volume and other key traits such as height 
and cognitive function, as well as with Parkinson’s disease, indicating 
that the genes underlying brain development have far-reaching effects 
that extend well beyond the initial years of life.

The 17q21 locus tags a 1-Mb inversion that is under positive selec-
tion in Caucasians14. It contains multiple genes, including MAPT 
and KANSL1. The MAPT gene has been consistently implicated in 
various neurodegenerative disorders, including Parkinson’s disease, 
Alzheimer’s disease and frontotemporal dementia15,16, and micro-
duplications have been reported to cause microcephaly17. KANSL1 
causes the reciprocal 17q21.31 microdeletion syndrome: a mul-
tisystem disorder characterized by intellectual disability, hypotonia 
and distinctive facial features18. The signal at 6q22 is intergenic to 
CENPW and RSPO3, but now lies 172 kb closer to CENPW. Notably, 
multiple variants at this locus independently influence bone mineral 
density19,20, and our signal particularly overlapped with the variant 
showing high specificity for the skull20.

The significant variants at chr 6q21 span FOXO3, a gene associ-
ated with longevity21, height13 and serum IGF1 levels22. FOXO3 
regulates the proliferation of neural stem cells, and knockout mice 
have larger brains, resulting from increased proliferation imme-
diately after birth23, followed by a decrease in adult neural stem 
cell renewal23,24. The rs3800229 variant in strong LD with our top 
variant (r2 = 0.84) contains chromatin promoter marks in the fetal 
brain (Supplementary Table 4), and regulates serum IGF1 levels in 
infants25. This provides a link to the genome-wide significant locus 
on chr12q23 near IGF1, pointing to a potential mechanism by which 
these loci may affect brain growth. Chr12q23 lies 20 Mb from one of 
two loci previously detected for head circumference in children26, but 
that region was not associated with intracranial volume in our study 
(rs7980687, P = 0.06). The other reported child head circumference 
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Figure 3 Meta-analysis of intracranial volume and child head 
circumference. A ‘twin’ Manhattan plot shows every variant twice: once 
for the discovery analysis and once for the combined discovery plus 
replication analysis. The least significant association of the variant-pair 
is plotted in gray (alternating light and dark between chromosomes). 
The most significant association of the variant-pair is plotted in red if 
is from the combined analysis (that is, the association became more 
significant after meta-analyzing with the child head circumference 
GWAS) and in turquoise if it is from the discovery analysis (that is, the 
association became less significant after meta-analyzing with the child 
head circumference GWAS). The dashed horizontal line represents a 
significance threshold of P < 10−6 and the solid horizontal line represents 
genome-wide significance of P < 5 × 10−8. Variants surpassing these 
thresholds are indicated by larger and brighter points.
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locus, however, corresponded to our chr12q14 signal, with the top 
variant lying 14 kb downstream of HMGA2, and already showed sug-
gestive association with intracranial volume in a previous report7. It 
has also previously been associated with height13 and is essential for 
growth27. The chr10q24 LD-block covered multiple genes, but an 
intronic variant in PDCD11 was most significant. PDCD11 encodes 
an NF-κB-binding protein that is required for rRNA maturation and 
generation of 18S rRNA28. A variant in LD (rs7894407) has recently 
been identified in a GWAS of cerebral white matter hyperintensi-
ties29. The top chr3q28 variant is located upstream of GMNC, which 
encodes the geminin coiled-coil domain-containing protein essential 
for DNA replication30.

Prior efforts to identify variants affecting intracranial volume were 
much smaller and did not adjust for height6–9. We found that four of 
seven loci had already been discovered for height13, and that over 
10% of the known ‘height loci’ actually affected intracranial volume, 
even after regressing out height. Interestingly, some variants showed 
discordant associations for height and intracranial volume, consist-
ent with the recent finding that different height loci disproportion-
ally affect either leg length or spine and head length31, and may be 
a marker for pathological development32. In addition, height might 

therefore serve as a proxy phenotype for intracranial volume, with 
the tenfold larger sample of the height GWAS giving greater power  
to detect associations. Neural genes are also enriched in pathway 
analyses of height13. However, to fully disentangle whether these 
identified genes are ‘height genes’, ‘brain volume genes’ or ‘growth 
genes’ (that is, pleiotropic), a large collaborative effort is needed  
that examines the association of these variants with both intracranial 
volume and height in various models.

When investigating genome-wide overlap with other traits, we 
found a strong correlation with child head circumference, underlining 
the notion that intracranial volume is a valid measure for maximal 
attained brain size. We were able to leverage this genetic link by  
meta-analyzing both traits, which led to the identification of four 
additional loci (2q32.1, 3q23, 7p14.3 and 22q13.2). The correlations 
with birth length and weight were weaker and decreased further  
after adjusting for height, so a similar phenotypic correlation  
between head size and body size at younger age may drive these cor-
relations. Intracranial volume was also genetically associated with 
cognitive function in childhood, as well as general cognitive function 
in middle-aged and older individuals. This indicates that variation in 
maximally attained brain size during development shares a genetic 
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basis with cognitive ability later in life and supports intracranial  
volume as a measure of brain reserve5.

The brain reserve hypothesis states that premorbid brain size can 
modify resilience to age-related brain pathology33, but there was 
no indication of a genome-wide overlap with Alzheimer’s disease. 
However, we found a positive genetic correlation with Parkinson’s dis-
ease, which instead points to a brain ‘overgrowth’ hypothesis. Notably, 
the IGF1 and the PI3K-AKT pathways, key factors in both growth 
signaling and our current study of intracranial volume, are neuro-
protective in a model system of Parkinson’s disease34. There were no 
correlations with other neurological or psychiatric traits, indicating 

that this finding might be specific to Parkinson’s disease. However, it 
is important to note that there is a certain extent of variation in the 
sample size and power of these studies, and a larger GWAS might 
reveal genetic correlation with other traits as well.

It is not yet known whether variance in intracranial volume, in the 
normal range, contributes to disease risk or brain reserve. There is 
no doubt that in the pathological extremes of the distribution, size  
can matter, as in disorders such as microcephaly or macrocephaly. 
Here we found evidence for a shared genetic background between 
intracranial volume and cognitive function, and risk of Parkinson’s 
disease. Although not definitive, these are new pieces of empirical 
evidence in the debate on whether or not whole brain size matters.

The pathway analyses highlight cellular growth and proliferation and 
included all components of the cell cycle (M, G1, S and G2 phases) and 
various growth factor signaling pathways. PI3K-AKT signaling has a 
well-described role in brain overgrowth disorders35,36, and was the 
only significant pathway using a different pathway analysis method 
(Supplementary Table 11). Interestingly, AKT3 intronic variants 
showed suggestive evidence for association with intracranial volume 
(rs7538011; P = 9.2 × 10−7). Deletions of AKT3 cause microcephaly 
syndromes37, whereas duplications give rise to macrocephaly38. Similar 
to FOXO3, it is part of the IGF1 signaling pathway, which is impor-
tant for human longevity39. The PI3K-AKT signaling pathway seems 
to have an important role in brain growth, not only in pathological 
extremes, but also for normal variation at a population level. Other 
pathways enriched for association with intracranial volume highlight 
neuronal functions such as neurotransmission and axon guidance.

We identified previously unknown loci that influence intracranial 
volume, and, at a genome-wide level, there seemed to be common 
pathways, but our longitudinal study revealed that their developmen-
tal effects are complex. The loci influenced trajectories of head growth 
differently; it would also be interesting to investigate whether their 
spatial profiles of effects are distinct, such as certain loci promoting 
growth of particular brain regions.

Here we identified key genetic loci that have been implicated in 
intracranial volume in a global collaborative effort, followed by com-
putational analyses to determine the important biological pathways 
and functional elements. Although the majority of the genetic variants 
are yet to be discovered, it is clear that these will provide better insight 
into brain development, as well as into related neuropsychiatric traits 
such as cognitive functioning and even for neurodegeneration late  
in life. Uncovering the remaining heritability will advance our  
understanding of the brain’s complex genetic architecture.

URLs. ftp://pricelab:pricelab@ftp.broadinstitute.org/LDSCORE/, 
http://enigma.ini.usc.edu/protocols/genetics-protocols/, http://
genenetwork.nl/bloodeqtlbrowser/, http://gump.qimr.edu.au/general/ 
gabrieC/LocusTrack/.



METHODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Figure 5 



Temporal trends of intracranial volume loci during pre- and 

postnatal brain development. Mean predicted values of standardized  
head circumference using linear mixed models with age, sex, and the 
rs199525 or rs138074335 variants. The blue line represents children  
not carrying the risk allele, purple only a single risk allele and red with  
two risk alleles. See Online Methods for additional information.  
Total sample size was 2,824.
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EDITORIAL SUMMARY
AOP: In a GWAS study of 32,438 adults, the authors discovered five novel loci for intracranial volume and confirmed two known signals. Variants for intrac-
ranial volume were also related to childhood and adult cognitive function and to Parkinson’s disease, and enriched near genes involved in growth pathways, 
including PI3K-AKT signaling.
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ONLINE METHODS
Study population. This 




study reports data on 32,438 subjects from 52 study 

sites that are part of the Cohorts for Heart and Aging Research in Genomic 
Epidemiology (CHARGE)10 consortium and Enhancing NeuroImaging Genetics 
through Meta-Analysis (ENIGMA)11 consortium. Briefly, the CHARGE con-
sortium is a collaboration of predominantly population-based cohort studies 
that investigate the genetic and molecular underpinnings of age-related complex 
diseases, including those of the brain. The ENIGMA consortium brings together 
numerous studies, mainly with a case-control design, which performed neuroim-
aging in a range of neuropsychiatric or neurodegenerative diseases, as well as 
healthy normative populations. Studies participated in either the discovery cohort 
of European ancestry, the replication in European ancestry, or the generalization 
to other ethnicities. An overview of the demographics and type of contribution 
for each cohort is provided in Supplementary Table 1. Written informed consent 
was obtained from all participants. Each study was approved by the respective 
institutional review board or local ethics committee.

genetics. Genotyping was performed using a variety of commercial arrays across 
the contributing sites. Both samples as well as variants underwent similar quality 
control procedures based on genetic homogeneity, call rate (less than 95%), minor 
allele frequency (MAF < 0.01), and Hardy-Weinberg Equilibrium (HWE p-value 
less than 1 × 10−6). Good quality variants were used as input for imputation to 
the 1000 Genomes reference panel (phase 1, version 3) using validated software 
packages (MaCH/minimac, IMPUTE2, BEAGLE, GenABLE). Variants that were 
poorly imputed (R2 < 0.5) or uncommon (MAF < 0.5%) were removed before 
meta-analysis. Full details on the site-specific genotyping and quality control may 
be found in Supplementary Table 2.

Imaging. Magnetic resonance imaging (MRI) was obtained from scanners  
with a diversity of manufacturers, field strengths, and acquisition protocols. 
Images were used to estimate milliliters of intracranial volume from automated 
segmentations generated by freely available or in-house methods that have  
been described and validated earlier. Most sites measured intracranial volume for 
each participant by multiplying the inverse of the determinant of the transforma-
tion matrix required to register the subject’s MRI scan to a common template 
by the template volume (1,948,105 mm3), using the FreeSurfer software. Visual 
inspections were performed to identify and remove poorly segmented images. 
Either all scans were visually inspected, or sites generated histogram plots to  
identify any outliers, which were defined as individuals with a volume more 
than 3 s.d. away from the mean. Statistical outliers were only excluded if the 
segmentations were deemed improper. More site-specific information related to 
the imaging is available in Supplementary Table 3.

gwAS. GWAS of intracranial volume were performed for each site separately, 
controlling for age, sex, and, when applicable, age2, population stratification 
variables (MDS / principal components), study site (for multi-site studies 
only), diagnosis (for case-control studies only). Studies of unrelated individuals 
performed a linear regression analyses whereas studies of related individuals 
(ASPSFam, BrainSCALE, ERF, GeneSTAR, GOBS, NeuroIMAGE, NTR-Adults, 
OATS, QTIM, SYS) used linear mixed models to account for familial relation-
ships. Summary statistics, including the effect estimates of the genetic variant 
with intracranial volume under an additive model, were exchanged to perform 
a fixed-effects meta-analysis weighting for sample size in METAL47. After the 
final meta-analysis, variants were excluded if they were only available for fewer 
than 5,000 individuals. Meta-analyses were stratified by race and done sepa-
rately for discovery, replication, and generalization samples. Beta coefficients 
were recalculated from Z-scores, allele frequencies, and the sample, as described 
earlier48 Site-specific quantile-quantile plots were generated to inspect the pres-
ence of genomic inflation. The variance explained by all variants in the GWAS 
was estimated using LD score regression12,49. Sensitivity analyses were performed 
by excluding patients.

Functional annotation. All tracks of the regional association plots were taken 
from the UCSC Genome Browser Human hg19 assembly. SNPs (top 5%) shows 
the top 5% associated variants within the locus and are colored by their correlation 
to the top variant. Genes shows the gene models from GENCODE version 19. The 
tracks give the predicted chromatin states based on computational integration  
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of ChIP-seq data for 12 chromatin marks in various human tissues derived from 
the Roadmap Epigenomics Consortium46. In addition, we used HaploReg version 
3 for annotation of the top variants and all variants in LD (>0.80) (http://www.
broadinstitute.org/mammals/haploreg/haploreg_v3.php).

genetic correlation. The genetic correlation analyses were also performed using 
LD score regression. The GWAS meta-analysis of intracranial volume, as well as 
the height adjusted and height subset meta-analyses, were correlated with pub-
lished GWAS of the following traits: child head circumference26, birth weight50, 
birth length51, adult height13, childhood cognitive function45, adult cognitive 
function40, Alzheimer’s disease52, Parkinson’s disease43, white matter lesions29, 
psychiatric disorders44, neuroticism41, and extraversion42.

enrichment analyses. To determine whether the intracranial volume associa-
tion results were enriched for certain types of genetic variants, we employed two 
strategies: partitioned heritability and pathway analyses.

Partitioned heritability was calculated using a previously described method49. 
This was done by partitioning variants by chromosome and by 28 functional 
classes: coding, UTR, promoter, intron, histone marks H3K4me1, H3K4me3, 
H3K9ac5 and two versions of H3K27ac, open chromatin DNase I hypersensi-
tivity Site (DHS) regions, combined chromHMM/Segway predictions, regions 
that are conserved in mammals, super-enhancers and active enhancers from 
the FANTOM5 panel of samples49. Multiple testing thresholds were calculated 
accordingly: Pthresh = 0.05/(22 chromosomes) = 2.27 × 10−3 for the chromosomes 
and Pthresh = 0.05/(28 classes) = 1.79 × 10−3 for the functional classes.

Pathway analyses were performed using the KGG2.5 (ref. 53) and MAGENTA54 
software packages. LD was calculated based with the 1000 Genomes Project 
European samples as a reference (see below). Variants were considered to be 
within a gene if they were within 5 kb of the 3′/5′ UTR based on chromosome 
positions (hg19) coordinates. Gene-based tests were done with the GATES test53 
without weighting P values by predicted functional relevance. Pathway analysis 
was performed using the HYST test of association55. A multiple testing threshold 
accounting for the number of pathways tested resulting in a significance threshold 
of Pthresh = 0.05/(671 pathways) = 7.45 × 10−5.

Head growth trajectories. Head growth trajectory analyses were done within 
the Generation R study, a longitudinal cohort study situated in Rotterdam, the 
Netherlands. For this analysis we included 2,824 children of European ancestry 
followed prenatally until 6 years of age. Head size was measured at the following 
points: prenatally (using echo) during the first, second, and third trimester, and 
postnatally (measuring head circumference) at 0–2 months, 2 months, 3 months, 
4 months, 5–10 months, 10–13 months, 13–17 months, and 5 years of age. We 
tested whether a polygenic score of the 7 loci, as well as the 7 loci themselves 
separately, were related to head growth using linear mixed models and included 
an interaction term between time and the genetic score/variant (SAS software). 
Next, the predicted values were calculated for each person and plotted over time, 
stratified by genotype (0/1/2 risk alleles) using the R software package.
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